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Abstract. The members of Martin-Löf random closed sets under a dis-
tribution studied by Barmpalias et al. are exactly the members of Martin-
Löf random Galton-Watson trees with survival parameter 2

3
. This follows

from an effective version of the result that the Barmpalias et al. distri-
bution is the distribution of the infinitely extendible part of a Galton-
Watson tree, conditioned on the event that the tree is infinite. To be such
a member, a sufficient condition is to have effective Hausdorff dimension
strictly greater than γ = log2

3
2
, and a necessary condition is to have

effective Hausdorff dimension greater than or equal to γ.
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1 Introduction

Classical probability theory studies intersection probabilities for random sets. A
random set will intersect a given deterministic set if the given set is large, in
some sense. Here we study a computable analogue: the question of which real
numbers are “large” in the sense that they belong to some Martin-Löf random
closed set.

Barmpalias et al. [2] introduced algorithmic randomness for closed sets. Sub-
sequently Kjos-Hanssen [5] used algorithmically random Galton-Watson trees to
obtain results on infinite subsets of random sets of integers. Here we show that
the distributions studied by Barmpalias et al. and by Galton and Watson are
actually equivalent, not just classically but in an effective sense.

For 0 < γ < 1, let us say that a real x is a Memberγ if x belongs to some
Martin-Löf random closed set according to the Galton-Watson distribution with
survival parameter p = 2−γ . We show that for p = 2

3 , this is equivalent to x
being a member of a Martin-Löf random closed set according to the distribution
considered by Barmpalias et al. In light of this equivalence, we may state that
Barmpalias et al. showed that in effect not every Memberγ is ML-random, and
that Joe Miller and Antonio Montálban showed that every ML-random real is a
Memberγ ; the proof of this result is given in the paper of Barmpalias et al. [2]

http://www.math.uchicago.edu/~ded
http://www.math.hawaii.edu/~bjoern
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2 Equivalence of two models

We write Ω = 2<ω, and 2ω, for the sets of finite and infinite strings over 2 =
{0, 1}, respectively. If σ ∈ Ω is an initial substring (a prefix) of τ ∈ Ω we
write σ � τ ; similarly σ ≺ x means that the finite string σ is a prefix of the
infinite string x ∈ 2ω . The length of σ is |σ|. We use the standard notation
[σ] = {x : σ ≺ x}, and for a set U ⊆ Ω, [U ]� :=

⋃
σ∈U [σ]. Let P denote the

power set operation. {0, 1} plays the role of an alphabet, and a tree is a set of
strings over {0, 1} that is closed under prefixes.

Following Kjos-Hanssen [5], for a real number 0 ≤ γ < 1 (so 1
2 < 2−γ ≤ 1),

let λ1,γ be the distribution with sample space P(Ω) such that each string in Ω
has probability 2−γ of belonging to the random set, independently of any other
string. Let λ∗γ be defined analogously, except that now

λ∗γ({S : S ∩ {σ0, σ1} = J} =

{
1− p if J = {σ0} or J = {σ1}, and
2p− 1 if J = {σ0, σ1},

independently for distinct σ, for p = 2−γ .
For S ⊆ Ω, ΓS , the tree determined by S, is the (possibly empty) set of

infinite paths through the part of S that is downward closed under prefixes:

ΓS = {x ∈ 2ω : (∀σ ≺ x)σ ∈ S}.

The (1, γ)-induced distribution P1,γ on the set of all closed subsets of 2ω is
defined by

P1,γ(E) = λ1,γ{S : ΓS ∈ E}.

Thus, the probability of a property E of a closed subset of 2ω is the probability
according to λ1,γ that a random subset of Ω determines a tree whose set of
infinite paths has property E. Similarly, let

P∗γ(E) = λ∗γ{S : ΓS ∈ E}.

By the Galton-Watson (GW) distribution for survival parameter 2−γ we will
mean the (1, γ)-induced distribution. It is also known as the distribution of a
percolation limit set (see Mörters and Peres [10]). S is called λ1,γ-ML-random if
for each uniformlyΣ0

1 sequence {Un}n∈ω of subsets ofΩ with λ1,γ(Un) ≤ 2−n, we
have S 6∈

⋂
n Un. In this case ΓS is called ML-random for the GW distribution.

Lemma 1 (Axon [1]). For 2−γ = 2
3 , Γ ⊆ 2ω is P∗γ-ML-random if and only if Γ

is a Martin-Löf random closed set under the distribution studied by Barmpalias
et al.

Thinking of S as a random variable, define further random variables

Gn = {σ : |σ| = n & (∀τ � σ) τ ∈ S}

and G =
⋃∞
n=0Gn. We refer to a value of G as a GW-tree when G is considered

a value of the random variable under the P1,γ distribution. (A BBCDW-tree is
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a particular value of the random variable analogous to G, for the distribution
P∗γ .) We have G ⊆ S and ΓG = ΓS ; however note that even G may have “dead
ends”.

For a GW-tree G, let

[G] = {σ ∈ G : G ∩ [σ] is infinite}.

Thus [G] ⊆ G ⊆ S, and values of [G] are in one-to-one correspondence with
values of ΓS .

Let e be the extinction probability of a GW-tree with parameter p = 2−γ ,

e = P1,γ [Γ = ∅] = λ1,γ({S : ΓS = ∅}).

For any number a let a = 1− a.

Lemma 2.
e = p/p.

Proof. Notice that we are not assuming 〈〉 ∈ S. We have e = p + pe2, because
there are two ways extinction can happen: (1) 〈〉 6∈ S, and (2) 〈〉 ∈ S but both
immediate extension trees go extinct.

Lemma 3.

P1,γ [[G] ∩ {〈0〉, 〈1〉} = J | [G] 6= ∅] = P∗γ [G1 = J ].

Proof. We claim that both are equal to

(2p− 1) · 1J={〈0〉,〈1〉} +
1∑
i=0

(1− p) · 1J={〈i〉}.

By symmetry, and because the probability that J = ∅ is 0, it suffices to calculate
the probability that J = {〈0〉, 〈1〉}. This is p(1−e)2

1−e = p(1 − e) = 2p − 1, using
Lemma 2, because first 〈〉 survives and then both immediate extensions are non-
extinct.

Lemma 4. Define ps = P1,γ(〈j〉 ∈ G | [G ∩ 〈j〉] = ∅ & 〈〉 ∈ G) and λf =
λ1,γ(· | [G] = ∅ & 〈〉 ∈ G). Then λf (〈i〉 ∈ G1) = ps.

Proof. We have

ps =
p2e2

pe
= pe = 1− p.

and λf [G1 = ∅] = p(1−p)2
pe2 = p2 and λf [G1 = {〈0〉, 〈1〉}] = p3e4

pe2 = (p)2. Hence

λf [G1 = J ] = (1− p)2 · 1J={〈0〉,〈1〉} +
1∑
i=0

p(1− p) · 1J={〈i〉} + p2 · 1J=∅,

and so λf (〈i〉 ∈ G1) = (1− p)2 + p(1− p) = ps.
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Let
λc = λ1,γ(· | [G] 6= ∅)

be the GW distribution conditional on survival of the whole tree. Let µi, µf , µc
be the distribution of the tree G corresponding to the set S under λi, λf , λc,
respectively. We define a µi × µf → µc measure-preserving map ψ : 2Ω × 2Ω →
2Ω . The idea is to overlay the two sets Si, Sf , so that Si specifies the infinitely
extendible part of a tree, and Sf specifies which extensions of finitely extendible
strings on the tree are on the tree. So to be precise, we let ψ(Si, Sf ) = Gi ∪ Sf
where Gi is the tree determined by Si. By Lemma 4, this gives the correct
probability for a finitely extendible string that is the neighbor of an infinitely
extendible string to be on the tree. Since each string on a GW-tree is either
infinitely extendible or not, it should be clear that ψ is measure-preserving.

A λi-ML-random tree may by van Lambalgen’s theorem be extended to a
λc-ML-random tree. To be precise, van Lambalgen’s theorem holds in the unit
interval [0, 1] or equivalently the space 2ω. If (X,µ) is a measure space (we
suppress the σ-algebras of measurable sets from the notation) then we call the
measure-preserving map ϕ : (X,µ) → ([0, 1], λ), where λ is Lebesgue measure,
induced from the measure algebra isomorphism theorem, see Kjos-Hanssen and
Nerode [6], the Carathéodory map for (X,µ). Using the Carathéodory map we
may apply van Lambalgen as desired. We have thus sketched a proof of Theorem
1.

Theorem 1. For each ML-random BBCDW-tree H there is a ML-random GW-
tree G with [G] = [H].

We next prove that the live part of every infinite ML-random GW-tree is an
ML-random BBCDW-tree.

Theorem 2. For each S, if S is λ1,γ-ML-random then [G] is λ∗γ-random.

Proof. Suppose {Un}n∈ω is a λ∗γ-ML-test with [G] ∈
⋂
n Un. Let Υn = {S : [G] ∈

Un}. By Lemma 3, λ1,γ(Υn) = λ∗γ(Un). Unfortunately, Υn is not a Σ0
1 class, but

we can approximate it. While we cannot know if a tree will end up being infinite,
we can make a guess that will usually be correct.

Let e be the probability of extinction for a GW-tree. By Lemma 2 we have
e = p

p , so since p > 1/2, e < 1. Thus there is a computable function (n, `) 7→ mn,`

such that for all n and `, m = mn,` is so large that em ≤ 2−n2−2`. Let Φ be a
Turing reduction so that ΦG(n, `), if defined, is the least L such that all the 2`

strings of length ` either are not on G, or have no descendants on G at level L,
or have at least mn,` many such descendants. Let

Wn = {S : for some `, ΦG(n, `) is undefined}.

Let AG(`) = [G] ∩ {0, 1}≤` be [G] up to level `. Let the approximation
AG(`, L) to AG(`) consist of the nodes of G at level ` that have descendants at
level L. Let

Vn = {S : AG(`, L) ∈ Un for some `, where L = ΦG(n, `)}, and
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Xn = {S : for some `, L = ΦG(n, `) is defined and AG(`, L) 6= AG(`)}.

Note
Υn = {S : for some `, AG(`) ∈ Un }

Hence
Υn ⊆Wn ∪Xn ∪ Vn

Thus it suffices to show that ∩nVn, Wn, ∩nXn are all λ1,γ-ML-null sets.

Lemma 5. Wn has λ1,γ-measure zero.

Proof. If Φ(`) is undefined then there is no L, which means that for the fixed
set of strings on G at level `, they don’t all either die out or reach m many
extensions. But eventually this must happen, so L must exist.

Indeed, fix any string σ on G at level `. Let k be the largest number of
descendants that σ has at infinitely many levels L > `. If k > 0 then with
probability 1, above each level there is another level where actually k + 1 many
descendants are achieved. So we conclude that either k = 0 or k does not exist.

From basic computability theory, Wn is a Σ0
2 class. Hence each Wn is a

Martin-Löf null set.

Lemma 6. Xn has λ1,γ-probability less than or equal to 2−n.

Proof. Let Eσ denote the event that all extensions of σ on level L are dead. Let
Fσ denote the event that σ has at least m many descendants on G(L).

If AG(`, L) 6= AG(`) then some σ ∈ {0, 1}` ∩G has at least m many descen-
dants at level L, all of which are dead. If a node σ has at least m descendants,
then the chance that all of these are dead, given that they are on G at level L,
is ≤ em (the eventual extinction of one is independent of that of another), hence
writing P = P1,γ , we have

P(AG(`, L) 6= AG(`)) ≤
∑

σ∈{0,1}`
P{Eσ & Fσ} =

∑
σ∈{0,1}`

P{Eσ | Fσ} · P{Fσ}

≤
∑

σ∈{0,1}`
P{Eσ | Fσ} ≤

∑
σ∈{0,1}`

em ≤
∑

σ∈{0,1}`
2−n2−2` = 2−n2−`.

and hence

PXn ≤
∑
`

P{AG(`, L) 6= AG(`)} ≤
∑
`

2−n2−` = 2−n.

Xn is Σ0
1 since when L is defined, AG(`) is contained in AG(`, L), and AG(`)

is co-c.e. in G, which means that if the containment is proper then we will
eventually see this. Thus ∩nXn is a ML null set.

Vn is clearly Σ0
1 . Moreover Vn ⊆ Υn ∪ Xn, so Vn has probability ≤ 2 · 2−n,

hence ∩nVn is a ML null set.
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3 Towards a characterization of members of random
closed sets

For a set of strings V , let [V ]� =
⋃
{[σ] : σ ∈ V } be the open subset of 2ω

defined by V . For a real number 0 ≤ γ ≤ 1, the γ-weight wtγ(C) of a set of
strings C is defined by

wtγ(C) =
∑
w∈C

2−|w|γ .

We define several notions of randomness of individual reals.

Definition 1. A Martin-Löf γ-test is a uniformly computably enumerable (c.e.)
sequence (Un)n<ω of sets of strings such that

(∀n)(wtγ(Un) ≤ 2−n).

A strong ML-γ-test is a uniformly c.e. sequence (Un)n<ω such that for each n
and each prefix-free set of strings Vn ⊆ Un, wtγ(Vn) ≤ 2−n.

A real is (strongly) γ-random if it does not belong to ∩n[Un]� for any (strong)
γ-test (Un)n<ω. If γ = 1 we simply say that the real, or the set of integers {n :
x(n) = 1}, is Martin-Löf random. For γ = 1, strongness makes no difference.)

For a measure µ and a real x, we say that x is Hippocrates µ-random if
for each sequence (Un)n<ω that is uniformly c.e., and where µ[Un]� ≤ 2−n

for all n, we have x 6∈ ∩n[Un]�. Let the ultrametric υ on 2ω be defined by
υ(x, y) = 2−min{n:x(n) 6=y(n)}. For a measure µ on 2ω, we write µ(σ) for µ([σ]).
x is Hippocrates γ-energy random if x is Hippocrates µ-random with respect to
some probability measure µ such that∫∫

dµ(b)dµ(a)
υ(a, b)γ

<∞.

Effective Hausdorff dimension was introduced by Lutz [7] and is a notion of
partial randomness. For example, if the sequence x0x1x2 · · · is Martin-Löf ran-
dom, then the sequence x00x10x20 · · · has effective Hausdorff dimension equal
to 1

2 . Let dim1
Hx denote the effective (or constructive) Hausdorff dimension of x;

then we have dim1
H(x) = sup{γ : x is γ-random} (Reimann and Stephan [12]).

If dim1
H(x) > γ then x is Hippocrates γ-energy random [5], and if x is strongly

γ-random then x is γ-random and so dim1
H(x) ≥ γ.

Kjos-Hanssen obtained a sufficient condition for Membership: each Hip-
pocrates γ-energy random real belongs to a Martin-Löf random closed set under
the (1, γ)-induced distribution.

Theorem 3 ([5]). Each Hippocrates γ-energy random real is a Memberγ .

Here we show a partial converse:

Theorem 4. Each Memberγ is strongly γ-random.
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Proof. Suppose x is a Memberγ . Let P = P1,γ and p = 2−γ ∈ ( 1
2 , 1]. Let i < 2

and σ ∈ Ω. The probability that the concatenation σi ∈ G given that σ ∈ G is
by definition

P{σi ∈ G | σ ∈ G} = p.

Hence the absolute probability that σ survives is

P{σ ∈ G} = p|σ| =
(
2−γ

)|σ| =
(

2−|σ|
)γ
.

Let U be any strong γ-test, i.e. a uniformly c.e. sequence Un = {σn,i : i < ω},
such that for all prefix-free subsets U ′n = {σ′n,i : i < ω} of Un,

∞∑
i=1

2−|σ
′
n,i|γ ≤ 2−n.

Let U ′n be the set of all strings σ in Un such that no prefix of σ is in Un. Clearly,
U ′n is prefix-free. Let

[Vn]� := {S : ∃i σn,i ∈ G} ⊆ {S : ∃i σ′n,i ∈ G}.

Clearly [Vn]� is uniformly Σ0
1 . To prove the inclusion: Suppose G contains some

σn,i. Since G is a tree, it contains the shortest prefix of σn,i that is in Un, and
this string is in U ′n.

Now
P[Vn]� ≤

∑
i∈ω

P{σ′n,i ∈ G} =
∑
i∈ω

2−|σ
′
n,i|γ ≤ 2−n.

Thus V is a test for λ1,γ-ML-randomness. Let S be any λ1,γ-ML-random set
with x ∈ ΓS . Then S 6∈ ∩n[Vn]�, and so ∃n, Γ ∩ [Un]� = ∅. Hence x 6∈ [Un]�.
As U was an arbitrary strong γ-test, this shows that x is strongly γ-random.

Theorem 5. Let x ∈ 2ω. We have the implications

dim1
H(x) > γ ⇒ x is a Memberγ ⇒ dim1

H(x) ≥ γ.

Proof. By Reimann [11], each real x with dim1
H(x) > γ is β-capacitable for some

β > γ. By Lemma 2.5 of Kjos-Hanssen [5], x is Hippocrates γ-energy random.
The hippocratic restriction that tests are not allowed to consult the measure
is not even required, i.e., x is what we may simply call γ-energy random. Each
strongly γ-random real x satisfies dim1

H(x) ≥ γ (see e.g. Reimann and Stephan
[12]).

The second implication does not reverse, as not every real with dim1
H(x) ≥ γ

is strongly γ-random (see [12]). We strongly conjecture that the first implication
fails to reverse as well, and that there is a Hippocrates γ-energy random real of
dimension exactly γ, but will not pursue the matter here.

Our results explain a finding of Barmpalias et al. regarding approximations
of Members:
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Proposition 1. If x is a real such that the function n 7→ x(n) is f -computably
enumerable for some computable function f for which∑

j<n f(i)
2nγ

goes effectively to zero, then x is not γ-random.

Proof. Suppose n 7→ x(n) is f -c.e. for some such f , and let F (n) =
∑
j<n f(n).

Let α be any computable function such that α(n, i) 6= α(n, i + 1) for at most
f(n) many i for each n, and limi→∞ α(i, n) = x(n). Let c(n, j) be the jth such
i that is discovered for any k < n; so c is a partial recursive function whose
domain is contained in {(n, j) : j ≤ F (n)}. For a fixed i, α defines a real αi by
αi(n) = α(i, n). Let

Vn = {x : ∃j ≤ F (n) x � n = αc(n,j) � n)}.

Since Vn is the union of at most F (n) many cones [x � n],

wtγ(Vn) ≤
F (n)∑
j=1

2−nγ =
F (n)
2nγ

Since by assumption F (n)
2nγ goes effectively to zero, there is a computable

sequence {nk}k∈N such that wtγ(Unk) ≤ 2−k.
Let Uk = Vnk . Then Uk is Σ0

1 uniformly in k, and x ∈ ∩kUk. Hence x is not
γ-random.

Corollary 1 ([2]). No member of a ML-random closed set under the BBCDW
distribution is f -c.e. for any polynomial-bounded f .

Proof. If f is polynomially bounded then clearly
P
j<n f(i)

2nγ goes effectively to
zero. Therefore if x is f -c.e., x is not γ-random, hence not a Memberγ and thus
not a member of a ML-random closed set under the BBCDW distribution.

Computing Brownian slow points. One can show that each non-DNR Tur-
ing degree is Low(ML-random, Kurtz random). (A proof of this result, credited
to Kjos-Hanssen, is given by Greenberg and Miller [3]. They prove that the con-
verse holds as well.) This can be used to show that each slow point (see Mörters
and Peres [10]) of any Martin-Löf random Brownian motion must be of DNR
Turing degree. [The fast points on the other hand form a dense Gδ set, and
this can be used to show that there are fast points that are 1-generic and hence
do not Turing compute any slow points.] This observation eventually led to the
present paper. Rather than working with DNR functions, one could use the work
of Hawkes [4] and Lyons [8] to understand random sets that intersect given sets
with known probabilities. Positive results for intersection were given in [5], and
a negative result is given in Theorem 4 above.
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Future work

Conjecture 1. A real x is a Memberγ if and only if x is Hippocrates γ-energy
random.

To prove Conjecture 1, one might try to consult a paper of Lyons [9].

Acknowledgments

The authors thank the Institute of Mathematical Science at Nanjing University
(and in particular Liang Yu), where the research leading to Section 2 was carried
out in May 2008, for their hospitality. The second author was partially supported
by NSF grant DMS-0652669.



Bibliography

[1] Logan Axon, Random closed sets and probability, doctoral dissertation, University
of Notre Dame, 2009.

[2] George Barmpalias, Paul Brodhead, Douglas Cenzer, Ali Seyyed Dashti, and Re-
becca Weber, Algorithmic randomness of closed sets, J. Logic Comput. 17 (2007),
no. 6, 1041–1062. MR 2376074

[3] Noam Greenberg and Joseph S. Miller, Lowness for Kurtz randomness, Journal of
Symbolic Logic, to appear.

[4] John Hawkes, Trees generated by a simple branching process, J. London Math.
Soc. (2) 24 (1981), no. 2, 373–384. MR 631950 (83b:60072)

[5] Bjørn Kjos-Hanssen, Infinite subsets of random sets of integers, Mathematical
Research Letters 16 (2009), to appear.

[6] Bjørn Kjos-Hanssen and Anil Nerode, Effective dimension of points visited by
Brownian motion, Theoretical Computer Science, In Press, Accepted Manuscript,
Available online 1 October 2008.

[7] Jack H. Lutz, Gales and the constructive dimension of individual sequences, Au-
tomata, languages and programming (Geneva, 2000), 2000, pp. 902–913.

[8] Russell Lyons, Random walks and percolation on trees, Annals of Probability 18
(1990), no. 3, 931–958. MR 1062053 (91i:60179)

[9] , Random walks, capacity and percolation on trees, Annals of Probability
20 (1992), no. 4, 2043–2088. MR 1188053 (93k:60175)

[10] Peter Mörters and Yuval Peres, Brownian Motion. Draft available at
http://www.stat.berkeley.edu/∼peres/.

[11] Jan Reimann, Effectively closed classes of measures and randomness, Annals of
Pure and Applied Logic 156 (2008), no. 1, 170–182.

[12] Jan Reimann and Frank Stephan, Effective Hausdorff dimension, Logic Collo-
quium ’01, 2005, pp. 369–385.


	Members of Random Closed Sets
	David Diamondstone cl@@auth and Bjørn Kjos-Hanssen

