
LOW UPPER BOUNDS IN THE LR DEGREES

DAVID DIAMONDSTONE

Abstract. We say that A ≤LR B if every B-random real is A-random—in

other words, if B has at least as much derandomization power as A. The LR

reducibility is a natural weak reducibility in the context of randomness, and
generalizes lowness for randomness. We study the existence and properties of

upper bounds in the context of the LR degrees. In particular, we show that

given two (or even finitely many) low sets, there is a low c.e. set which lies LR
above both. This is very different from the situation in the Turing degrees,

where the Sacks splitting theorem shows that two low sets can join to 0′. The

techniques used provide new ways of working in the LR degrees.

1. Introduction

One of the main themes in the theory of algorithmic randomness has been study-
ing the relationship between the randomness of a set of natural numbers, and its
computational power. One surprising feature that has emerged is that this relation-
ship is not monotone, but rather follows something like a bell curve. At one end, we
have sets which are far from being random, which exhibit little or no computational
power. These include the computable sets, and the trivial sets, which have minimal
initial segment complexity. At the other end, we have sets which are extremely
random, such as the 2-randoms, n-randoms, and Π1

1-Martin-Löf-randoms. These
sets also exhibit little computational power. In the middle, however, where we have
1-randoms, we find sets that can have extraordinary computational power. In fact,
a theorem due independently to Kučera [9] and Gàcs [6] says that every Turing
degree above the halting problem contains a set which is 1-random. This theorem
tells us that 1-random sets can have arbitrarily high computational power.

In this paper, we examine the left end of this spectrum, those sets which are
far from random: the K-trivials. This remarkable class of sets seems to come
up again and again. Many natural lowness notions have been introduced in the
theory of randomness, and, surprisingly, many of them coincide. First there are the
K-trivials, those sets which have minimal initial segment Kolmogorov complexity.

Definition 1. A is K-trivial if there is some constant c such that

(∀n)K(A�n) ≤ K(n) + c.

Then there are sets which are low for randomness (sets A where MLRA =
MLR) or low for K (sets A where KA − K is bounded). The list goes on: we
have sets which are low for weak 2-randomness, sets which are bases for Martin-Löf
randomness, and others. The fact that all of these randomness-theoretic lowness
properties exactly coincide is one of the more remarkable results in the theory of
randomness. These equivalence theorems were not easy, and were proved in many
separate parts by researchers including Denis Hirschfeldt, André Nies, and Frank

1

2 DAVID DIAMONDSTONE

Stephan (see [11], [7], and [4]). Much current research in randomness tries to better
understand this class.

2. Background

2.1. weak reducibilities. One way of studying a lowness notion is by studying an
associated weak reducibility. A preorder ≤∗ on the power set of the natural numbers
is called a weak reducibility if it is weaker than Turing reducibility, i.e. A ≤T B
implies A ≤∗ B. Weak reducibilities are often associated to lowness notions by
relativizing (or partially relativizing) the lowness notion. Every weak reducibility
has an associated degree structure, where the degrees are equivalence classes under
bi-reducibility, and are partially ordered by the reducibility.

André Nies introduced LR-reducibility as another way of understanding lowness
for randomness [11]. (The definition is a partial relativization of being low for
random, hence the name LR.)

Definition 2. The LR reducibility is the weak reducibility defined by A ≤LR B if
MLRB ⊆MLRA.

The bottom degree {A | A ≤LR 0} is the set of low-for-random reals, i.e. the
K-trivials. This is only a partial relativization, because A ≤LR B is different from
A low-for-random relative to B. Actually A is low-for-random relative to B if and
only if A ⊕ B ≤LR B. The reason that a partial relativization rather than a full
relativization is used is that a full relativization does not give a transitive relation.

Kjos-Hanssen, Miller, and Solomon proved in [8] that this structure is equivalent
to another structure, the LK degrees, which are defined by giving a partial rela-
tivization of being low for K: A ≤LK B if KA ≤ KB +O(1). This generalizes the
fact that being low for K is the same as being low for randomness, making this
a relatively robust structure. However, it is not a true reducibility, because there
are no reduction procedures. In fact, Barmpalias, Lewis, and Soskova showed in
[2] that 0′ has uncountably many predecessors under LR. This was improved by
Joseph Miller in [10], where he showed that the same is true for each set which is
not low for Ω.

This paper introduces a new technique for dealing with the LR reducibility, and
applies that technique to exhibit a surprising divergence between the LR degrees
and the Turing degrees:

Theorem 1. Given low sets A, B, there is a low c.e. set C such that A,B ≤LR C.

This is in stark contrast with Sacks’ splitting theorem, which shows that 0′ is
the least upper bound in the Turing degrees of two low (c.e.) sets.

2.2. Properties of ≤LR. A good way to think about the LR reducibility is by

using the contrapositive definition: A ≤LR B if and only if MLRA ⊆ MLRB .
In other words, A ≤LR B if B has at least as much power as A to de-randomize,
i.e. to compute Martin-Löf tests covering any given real. So it does make sense to
regard this as a reducibility, but instead of a reduction from B to A, instead you
have something like a reduction from a Martin-Löf test relative to B to a Martin-
Löf rest relative to A. The LR reducibility is a covering notion: A ≤LR B if the
universal ML-test relative to B covers the universal ML-test relative to A.

LOW UPPER BOUNDS IN THE LR DEGREES 3

Because LR is a covering notion dealing with sets of bounded measure, it re-
lates to the reverse mathematics of measure theory. It has connections with other
definitions which have arisen in that context (see [12]):

Definition 3. B is almost-everywhere dominating if, for almost all reals X (w.r.t.
Lebesgue measure), everyX-computable function is dominated by someB-computable
function. B is uniformly almost-everywhere dominating if there is a single B-
computable function f such that for almost all X, every X-computable function is
dominated by f .

Bjørn Kjos-Hanssen, Joseph Miller, and Reed Solomon showed in [8] that the
following are equivalent for a real B:

• B is almost-everywhere dominating
• B is uniformly almost-everywhere dominating
• 0′ ≤LR B.

In addition to showing the connection with reverse mathematics, this theorem has
a useful corollary: if 0′ ≤LR B, then B is high. This is because of Martin’s high
domination theorem: a uniformly almost-everywhere dominating set can compute
a dominant function, so by Martin’s theorem, it must be high.

The LR reducibility will inevitably be compared to Turing reducibility, which
after all is the prototypical example of a reducibility for computability theorists.
However, ≤LR is very different from ≤T . One of the first examples of this is that
the usual Turing join, ⊕, is not a join in the LR degrees.

Observation. There are reals A,B such that A ≤ B, but A⊕B �LR B.

Proof. Let A be a promptly simple K-trivial (which exists by a cost function con-
struction; see [5]). Let B be a low set such that A ⊕ B ≡T 0′, by the well known
result of Ambos-Spies, Juckusch, Shore, and Soare [1]. Then A ≤LR 0 ≤LR B.
However, since B is low, it is not uniformly almost-everywhere dominating, so
A⊕B �LR B. �

It is not known whether there is a join in the LR degrees; it may be that there are
two LR degrees with no least upper bound. It is also not known whether greatest
lower bounds must always exist. Nevertheless, one can easily see that A⊕B is an
upper bound for A and B, even if it is not a least upper bound. The main result
of this paper shows that this upper bound may not even be close to being a least
upper bound. By Sacks’ splitting theorem, there are two low sets A and B with
A⊕ B ≡T 0′, but by the main result of this paper, there is a low c.e. set C which
is an LR-upper-bound for A and B.

One important technical tool for dealing with ≤LR is the following theorem, due
to Bjørn Kjos-Hanssen [3], which gives a characterization of A ≤LR B.

Theorem 2 (Kjos-Hanssen [3]). The following are equivalent for reals A,B:

• A ≤LR B
• every Σ0

1(A) class of measure less than 1 is contained in some Σ0
1(B) class

of measure less than 1
• some member of a universal Martin-Löf test relative to A is contained in a

Σ0
1(B) class of measure less than 1.

4 DAVID DIAMONDSTONE

2.3. Notation and conventions. Given a binary strings σ and a binary string
(or sequence) τ , write σ ⊂ τ if τ extends σ. Given a binary string σ, we write [[σ]]
for the basic open set determined by σ, i.e.

[[σ]] = {X ∈ 2ω | σ ⊂ X}.
Given a set of binary strings U , we write [[U]] for the open set determined by U ,
i.e.

[[U]] =
⋃
σ∈U

[[σ]].

Let σn be the nth string in the standard length-lexicographic ordering λ, 0, 1, 00,
01, 10, 11, . . . of binary strings. Let

Dy = {σn | a ’1’ appears at the nth position in the binary representation of y}.
We will also write this as D[y], when y is given by a complicated expression, and
adopt the convention that Dy is the empty set when y is undefined (i.e. when it
is given by a divergent computation). If U is a set of binary strings, w(U) =∑
σ∈U 2−|σ| is the weight of U . Thus w(U) ≥ µ([[U]]), with the two being equal if

and only if U is prefix-free. In order to work with c.e. sets of strings rather than
Σ0

1 classes of reals as often as possible, we will recast the definition of a universal
oracle ML-test as follows:

Definition 4. A universal oracle Martin-Löf test is a uniform sequence of c.e.

operators Un : 2ω → 22
<ω

such that for all X ∈ 2ω and for all n we have

• The measure of [[UXn]] is at most 2−n, and
• for all Martin-Löf tests relative X, some member of that test is a subset of

[[UXn]].

Remark. The universal oracle ML-tests used in this paper will meet the slightly
stronger condition that w(UXn) < 2−n. In other words, the weight is bounded by
2−n, rather just the measure being bounded. Universal oracle ML-tests exist which
meet this condition: simply take the usual existence proof, and force the sets to
remain prefix-free, which will ensure that the weight equals the measure.)

3. Exhibiting LR upper bounds

In this section, we outline the strategy behind the proof of the main theorem:

Theorem 1. Given two low sets A,B, there is a low c.e. set C such that A,B ≤LR
C.

Consider the problem, given a ∆0
2 setX, of producing a ∆0

2 set Y , with Y ≥LR X,
possibly with some additional properties. Since X is ∆0

2, we have an approximation
to X. By taking a member of the universal oracle Martin-Löf test and setting the
oracle to X, we obtain a Σ0

1(X) set UX . Furthermore, the ∆0
2 approximation to X

naturally gives a Σ0
2 approximation to UX . To ensure that Y ≥LR X, we will build

a Σ0
1(Y) set V Y with w(V Y) < 1 covering UX . If we succeed, then by the theorem

of Kjos-Hanssen, we will have X ≤LR Y .
The most obvious thing to do when σ enters UX is to immediately put σ in V Y .

However, if the approximation to X changes and σ leaves UX , it is less obvious
what to do. There are two choices, each having advantages and disadvantages.
The first choice is to do nothing, which leaves σ in V Y . This has the advantage
of preserving Y , so is compatible with other strategies which attempt to restrain

LOW UPPER BOUNDS IN THE LR DEGREES 5

Y , for example to make Y low. However, it keeps superfluous weight in V Y . If
this strategy is used too often, and the set X is not itself K-trivial, the result will
be w(V Y) = 1, so V Y will not be a witness to X ≤LR Y , as desired. The other
option is to change Y , which allows us to remove σ from V Y . The advantage of
this option is that it keeps superfluous weight out of V Y , making it easy to ensure
w(V Y) < 1. The disadvantage is that changing Y frequently can result in a set
which is computationally powerful. If this is done too frequently, we will have
Y ≥T X.

Even though the usual definition of Martin-Löf test refers to measure, as does
the theorem of Kjos-Hanssen we are making use of, this strategy instead deals with
weight. As discussed in the remark at the end of the introduction to this paper,
the definition of an Martin-Löf test may be recast in this matter, and this will
be equivalent for the purposes of defining randomness. Similarly, the theorem of
Kjos-Hanssen is still true when measure is replaced with weight, and the proof is
identical. So we do not lose anything by talking about weight instead of measure.
The main advantage is that nonempty sets can have measure 0, but nonempty sets
have positive weight. Thus if one can ensure that w(U \ V) = 0, then U ⊆ V .

3.1. Our strategy: divide and conquer. We are now ready to adapt the general
strategy for producing an LR-upper-bound Y for a single set X outlined above to
our specific case, where we want to bound two separate low sets A and B, and must
also make the set C ≥LR A,B be low. In order to ensure that C is low, we will
satisfy the usual lowness requirements

Ne : (∃∞s)ΦCe (e)↓ [s] =⇒ ΦCe (e)↓ .
We will use the standard strategy to satisfy these negative requirements: whenever
we see a computation ΦCe (e) converge with use u, we restrain C�u and prevent it
from changing unless a higher priority positive requirement takes precedence.

The positive requirements, however, need a new idea. We have two ensure two
things: that UA ⊆ V C , and that UB ⊆ V C , where V C is a Σ0

1(C) set we build
during the construction, with w(V C) < 1. In order to deal with this requirement
at the same time as we deal with the negative requirements, we will split it up
into an infinite collection of more manageable requirements, so that satisfying all
of them will mean that this one requirement is satisfied. We do this by replacing
the requirement UX ⊆ V C with a requirement that this is “almost” true: true up
to a set of small weight. So the positive requirements are as follows:

P2e : w(UA \ V C) ≤ 2−e−4

P2e+1 : w(UB \ V C) ≤ 2−e−4

The exponent −e−4 will be needed during the verification to show that w(V C) <
1. We will also fix a somewhat unusual priority list of requirements: in order of
decreasing priority, we will have N0,P0,P1,P2,P3,N1,P4,P5,P6,P7,N2, . . ., in-
terposing four positive requirements between every pair of negative requirements.
Again, this will be needed during the verification to show that w(V C) < 1.

This choice of positive requirements already suggests the beginnings of a strategy.
Since A and B are low, there are ∆0

2 approximations to A′ and B′. The strategy for
the positive requirement P2e is to use low guessing to find a finite set D with weight
w(D) = 2−e−4 that the A′ approximation believes will remain in UA, disjoint from
sets held by higher priority positive requirements for A, provided such a set exists.

6 DAVID DIAMONDSTONE

(The strategy for P2e+1 is the same, with B replacing A.) When D is found, it is
enumerated into V C . If the D guess later appears to incorrect, C is changed to
remove D from V C , unless changing C violates a higher priority restraint.

This strategy informs us how to make the difficult decision between changing
C, to keep the measure of V C small, or preserving C, to make C low. Whenever
some string σ was enumerated into V C , it was done so for a particular requirement
Pn. If σ later leaves the set UA which caused us to add σ to V C , we would like
to change C to remove σ from V C , but this might violate the restraint for Ne.
We can then choose to change C, which allows us to satisfy Pn without enlarging
V C , but injured Ne. Or we can choose to preserve C, which forces us to enlarge
V C to satisfy Pn, but avoids injuring Ne. Which one we choose depends on which
requirement comes first in the priority list. Lowness ensures that our guess at the
set D will eventually be correct, which means that positive requirements eventually
become satisfied. This in turns means that the positive requirements each act only
finitely often, so the negative requirements eventually become satisfied. Finally,
some careful bookkeeping will show that each string that ends up in V C without
being in either UA or UB can be tied to a specific negative requirement, in such a
way that no negative requirement can hold strings totaling too much weight. This
will show that w(V C) < 1, finishing the proof.

4. Low upper bounds

In this section we will give the full proof of the main theorem.

Theorem 1. If A, B are low, then there is a low c.e. set C such that A,B ≤LR C.

Proof. Let A, B be low, and let UX be the 3rd member of a universal oracle
Martin-Löf test (so for any X we have w(UX) ≤ 1

8). We introduce the following
requirements:

Ne : (∃∞s)ΦCs
e,s(e)↓ =⇒ ΦCe (e)↓

P2e : w(UA \ V C) ≤ 2−e−4

P2e+1 : w(UB \ V C) ≤ 2−e−4

Fix the priority list N0,P0,P1,P2,P3,N1,P4,P5,P6,P7,N2, . . . which inserts four
positive requirements between each pair of negative requirements. If R appears
before R′ in this list, we write R < R′.

To satisfy the positive requirement Pe, we introduce an auxiliary functional ΨX
e ,

defined during the course of the construction. In order to stabilize these functionals
with oracle A or B, we make use of the fact that A and B are low. Let A′(x) =
lims fA(x, s) with f computable, and likewise for B. Whenever a computation
ΨXs
e (n)↓= y, we “confirm” the computation by testing whether fX(i, s) = 1, where

i is some index such that ΦXi (i) = ΨX
e (n). If fX(i, s) = 1 we mark the computation

as confirmed, and only then take actions reliant upon this computation being valid.

Construction. Stage 0: Start the construction with C = ∅ and graphΨi = ∅ for
each i.

Stage s+ 1:

(1) For each i ≤ s, let ni be the number of times requirement Pi has been
injured. Let e ≤ s be minimal such that ΨXs

e (ne) undefined (throughout
the construction, X is A if e is odd, and is B if e is even) and there is a
finite set of strings D ⊆ UX , disjoint from any sets held by higher priority

LOW UPPER BOUNDS IN THE LR DEGREES 7

positive requirements for X, with w(D) = 2−be/2c−4, if such e exists. Let
y be the least index of such a set D, and let u be the maximum use of a
computation σ ∈ UX where σ ∈ Dy. Enumerate the triple (ne, Xs� u, y)
into the graph of Ψe.

(2) Let e ≤ s be minimal such that ΨXs
e (ne)↓ , this computation has not been

confirmed, and fX(i, s) = 1, where i is some index such that ΦXi (i) =
ΨX
e (ne), if such e exists. Mark the computation as confirmed. Declare all

strings in D[ΨXs
e (ne)] ‘held’ by Pe, and all lower priority positive require-

ments injured by Pe. Enumerate Dy \ V C into V C with use C�s.
(3) For each e ≤ s, if some string σ held by Pe is in UXt−1 \ UXt , any string

held by Pe is no longer held by Pe, nor is it held by any Ni > Pe. We say
Pe injures all lower priority negative requirements.

(4) For i ≤ s, if ΦCs
i,s(i) becomes defined, declare every string σ ∈ V C with use

u ≤ φCs
i,s(i) currently held by some requirement R > Ni to be held by the

requirement Ni. If R was a positive requirement, σ is still (concurrently)
held by R; if R was a negative requirement, then σ is no longer held by R.
Thus any string is held by at most one positive requirement and at most
one negative requirement, but may be concurrently held by one of each.

(5) Let u be minimal such that there is some τ ∈ V Cs�u
s which is not held by any

requirement (positive or negative), if such u exists. Enumerate u − 1 into
C. This has the result of removing a set of strings D from V C comprising
those strings which were in V Cs

s with use at least u. For each string σ ∈ D
still held by some positive requirement, enumerate σ into V C with use s.
For each string in D held by a negative requirement, it is no longer held by
that requirement.

This ends the construction.

Verification.

Lemma 3. All positive and negative requirements are injured at most finitely often.

Proof. We show by induction that the positive requirement Pe only injures lower
priority requirements finitely often. Assume all higher priority requirements only
injure Pe finitely often. The requirement Pe only injures lower priority positive
requirements when ΨX

e (ne) becomes confirmed, which means ΨX
e (ne) ↓ [s] and

fX(i, s) = 1, where i is some index such that ΦXi (i) = ΨX
e (ne). If this happens

infinitely often, then by the definition of fX , we must have ΨX
e (ne) ↓, so at some

stage s, the apparent computation must be permanent. After such a stage, Pe will
no longer injure lower priority positive requirements.

Similarly, the requirement Pe only injures lower priority negative requirements
when some string held by Pe (representing a confirmed computation) leaves UX .
This can only happen if X changes below the use of ΨX

e (ne), meaning that a
confirmed computation becomes divergent. If this happens infinitely often, we have
fX(i, s) = 1 infinitely often but ΨX

e (ne) ↑, which contradicts the definition of fX .
Thus Pe can injure lower prior negative requirements only finitely often. �

Corollary 4. If ΦCe (e) becomes defined at stage s with use u, and Ne is not sub-
sequently injured, then C�u = Cs�u.

Proof. We make the usual assumption that the stage bounds the use of all compu-
tations, so we must have s > u. An element x < u is only enumerated into C when

8 DAVID DIAMONDSTONE

some string τ ∈ V C with use x + 1 is removed from V C , which can only happen
if τ is not held by Ne. If τ was enumerated into V C at some stage after stage s,
then the use is at least s > u, so τ must have already been present in V C at stage
s. Thus, since the use x + 1 is at most u, the string τ would have been held by
Ne at stage s. If Ne is not subsequently injured, then τ will always be held by
Ne or some higher priority negative requirement (which cannot be injured without
Ne also being injured), and so will not be removed from V C . Thus x will not be
enumerated into C. The same holds for all x < u, so C�u = Cs�u. �

Corollary 5. C is low.

Lemma 6. UA =
⋃
eD[ΨA

2e(n2e)], where n2e is the number of times requirement
P2e is injured during the construction.

Proof. Let ek be the position of the kth one in the binary expansion of w(UA),
minus 4. Note that if e < e1, then eventually w(UA) < 2−e−4, so ΨA

2e(n2e) ↑ . On
the other hand, w(UA) ≥ 2−e1−4, so eventually ΨA

2e1(n2e1) ↓= y, with Dy ⊆ UA.

The same holds with UA \
⋃N
k=1D[ΨA

2ek
(n2ek)] in place of UA and eN+1 in place of

e1. So by induction on k, for all k we will have ΨA
2ek

(n2ek)↓= yk where

Dyk ⊆ UA \
ek−1⋃
e=1

D[ΨA
2e(n2e)].

Furthermore, the sets Dyk will be pairwise disjoint, and we will have ΨA
2e(n2e)↑ for

each e which is not equal to any of the ek, i.e. when e corresponds to the position
of a 0 in the binary expansion of w(UA).

From the above, we see that
⋃
eD[ΨA

2e(n2e)] ⊆ UA. To show the reverse inclusion
holds, first note that w(D[ΨA

2e(n2e)]) is either 0 or 2−e−4, depending on whether e
is equal to one of the ek. Since these sets are disjoint for different e, we must have

w

(⋃
e

D[ΨA
2e(n2e)]

)
= w(UA),

since both have the same binary expansion. Since
⋃
eD[ΨA

2e(n2e)] is a subset of UA

and has the same weight, the two must be equal. �

Lemma 7. UA ⊆ V C .

Proof. Since each requirement is injured finitely often, there is some first stage s
by which time requirement Pe has been injured as many times as it will ever be
injured, and ΨAs

2e,s(n2e) ↓= ΨA
2e(n2e). At this stage, all of the set D[ΨA

2e(n2e)] is

enumerated into V C , and never removed. Since UA =
⋃
eD[ΨA

2e(n2e)], we have
UA ⊆ V C . �

Note that analogues of the above lemmas hold with B in place of A, by the same
proofs.

Lemma 8. At any stage t, the negative requirement Ni can hold strings totaling
weight at most 3/22i+3.

Proof. We argue by induction on the stage t. Certainly at stage 0, no negative
requirement holds any string, so the claim holds at stage 0. Assume the claim
holds for all stages prior to some stage t > 0. Then at stage t, the total weight of

LOW UPPER BOUNDS IN THE LR DEGREES 9

strings held by Ni can only increase when ΦCi (i) becomes defined, in which case
Ni only holds strings previously held by some R > Ni. This comprises the strings
held by some Pe with e > 4i (weight at most 2−be/2c−4 for Pe) and strings held by
some Ne with e > i (weight at most 3/e2e+3, assuming the inductive hypothesis).
Thus the total weight held by Ni at stage t is at most∑

e>4i

2−be/2c−4 +
∑
e>i

3

22e+3
=

2

22i+3
+

3

22i+3

∑
e>i

1

4e−i

=
2

22i+3
+

3

22i+3

∞∑
e=1

1

4e
=

2

22i+3
+

3

22i+3

1

3
=

3

22i+3
.

By induction, the claim holds for all t. �

Lemma 9. w(V C) < 1.

Proof. A string is only enumerated into V C when it is held by Pe for some e, and it
is removed (by changing C) when it is no longer held by any requirement. The set of
strings permanently held by Pe is D[ΨX

e (ne)] (where X is either A or B depending
on the parity of e), so by the above lemmas the set of strings permanently held by
the positive requirements is exactly UA ∪ UB , which has total weight at most 1/4.
By the above lemma, the set of strings permanently held by requirement Ni has
weight at most 3/22i+3. Thus the total weight (and hence measure) of V C is at
most

1

4
+

∞∑
i=0

3

22i+3
=

1

4
+

1

2
=

3

4
< 1.

�

Corollary 10. A,B ≤LR C

Thus the low sets A, B, are LR-reducible to the low set C, as desired. �

5. References

References

[1] K. Ambos-Spies, C. Jockusch, R. Shore, and R. Soare, An algebraic decomposition of recur-

sively enumerable degrees and the coincidence of several degree classes with the promptly
simple degrees, Trans. Amer. Math. Soc. 281 (1984) 109–128.

[2] G. Barmpalias, A. Lewis, and M. Soskova, Randomness, Lowness and Degrees, J. Symbolic
Logic, 73 (2008) 559–577.

[3] B. Kjos-Hanssen, Low for random reals and positive measure domination, Proc. Amer. Math.

Soc., 135 (2007) 3703–3709.
[4] R. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity (Springer-Verlag,

Berlin, 2010).
[5] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan, Trivial reals, in: Proceedings of the 7th

and 8th Asian Logic Conferences (World Scientific, Singapore, 2003).
[6] Peter Gács, Every sequence is Turing-reducible to a random sequence, Information and Con-

trol 70 (1986) 186–192.
[7] D. R. Hirschfeldt, A. Nies, and F. Stephan, Using random sets as oracles, J. London Math.

Soc., 2nd series 75 (2007) 610–622.
[8] B. Kjos-Hanssen, J. Miller, and R. Solomon, Lowness notions, measure, and domination, J.

Symbolic Logic, 74 (2009) 517–534.
[9] Antonin Kučera, Measure, Π0

1 classes, and complete extensions of PA, in: Recursion Theory

Week (Oberwolfach 1984), volume 1141 of Lecture Notes in Mathematics (Springer–Verlag,
Berlin, 1985).

10 DAVID DIAMONDSTONE

[10] Joseph Miller, The K-degrees, low for K degrees, and weakly low for K sets, Notre Dame J.

Form. Log., 50 (2010) 381–391.

[11] André Nies, Lowness properties and randomness, Adv. Math., 197 (2005) 274–305.
[12] Stephen G. Simpson. Almost everywhere domination and superhighness. Math. Logic Quar-

terly, 53 (2007) 462–482.

E-mail address: ded@msor.vuw.ac.nz

Department of Mathematics, Statistics, and Operations Research, Victoria Univer-
sity of Wellington, P.O. Box 600, Wellington, 6140, New Zealand

