
PROMPTNESS DOES NOT IMPLY SUPERLOW CUPPABILITY

DAVID DIAMONDSTONE

Abstract. A classical theorem in computability is that every promptly simple

set can be cupped in the Turing degrees to some complete set by a low c.e.

set. A related question due to A. Nies is whether every promptly simple set
can be cupped by a superlow c.e. set, i.e. one whose Turing jump is truth-

table reducible to the halting problem ∅′. A negative answer to this question

is provided by giving an explicit construction of a promptly simple set that
is not superlow cuppable. This problem relates to effective randomness and

various lowness notions.

1. Introduction

The notion of lowness is a central idea in computability theory, which intuitively
expresses the idea that a set is computationally weak. It appears throughout com-
putability theory and related fields. Significant examples include the low basis
theorem of Jockush and Soare, as well as results in model theory, reverse mathe-
matics, and effective randomness. Many of these theorems share a common theme,
which is that low sets resemble computable sets, or else show that if one cannot
find a computable example of a given object, one can at least find one which is low.
Because being low is such a central idea which captures a natural property, it has
generalizations, strengthenings, weakenings, and analogs in many other structures.
One such fruitful analog is the idea of lowness in the theory of randomness. A sur-
prising result here is that many natural lowness properties in randomness coincide
and define the same class, known either as the K-trivials, or by other names which
express the other equivalent lowness properties. (This combines several results by
various researchers. A good survey paper is [4].)

One particular strengthening of the condition that a set A is low (A′ ≤T ∅′)
is the requirement that there is actually a truth-table reduction from its jump to
the halting problem (A′ ≤tt ∅′). If a set A satisfies this property, it is said to be
superlow. This is natural, because it indicates that not only can one approximate
the jump (as one can for any low set), but one can actually bound the number
of mistakes the approximation makes before settling down to the correct value. It
is also connected to important notions in randomness such as K-triviality: in [6],
Nies proves that all K-trivials are superlow. Superlow sets also occur in studying
notions of traceability, especially jump-traceability, which is another type of lowness

The author would like to thank Andreé Nies for originally asking the question and for generously
sharing early drafts of his upcoming book, which were very helpful; the referee for corrections and

suggestions, and for helping to streamline the proof; and Denis Hirschfeldt and Peter Cholak

for reading early drafts and offering their advice. Great thanks are also due the author’s advisor,
Robert Soare, for suggesting the problem, for countless hours spent listening to attempts at finding

a solution, and for his unwavering confidence that a solution would be found.

1

2 DAVID DIAMONDSTONE

property which has appeared in connection with randomness; jump-traceability and
superlowness coincide on the c.e. degrees.

When considering the computably enumerable sets, one can distinguish between
static properties of sets and dynamic properties. A computably enumerable set
A is enumerated in some order as a union of finite sets {An}n∈ω, and so one may
define dynamic properties by considering not just the final set A produced, but also
how it was produced; a static property is one which depends only on A, whereas a
dynamic property depends on both A and on how it is enumerated in a particular
enumeration. Lowness and superlowness are examples of static properties, because
they depend only on the features of the set A, and not how it was produced.
By contrast, an important dynamic property is that of prompt simplicity. A c.e.
set B is promptly simple if there is an enumeration {Bn}n∈ω and a computable
“promptness” function p : ω → ω such that for all e ∈ ω, if the eth c.e. set We

is infinite, then there is some stage s and an element x which is enumerated into
We at stage s, and appears in B by stage p(s) ≥ s. (We say that We intersects
B “promptly”, hence the name.) In a beautiful paper [1], Ambos-Spies, Jockush,
Shore, and Soare show that if a c.e. set B is promptly simple, then it is low cuppable:
there is a low c.e. set A which cups B in the c.e. Turing degrees, i.e. ∅′ ≤T A⊕B.
In fact, they go even further, and show that a c.e. set is low cuppable exactly when
it has the degree of a promptly simple set (such sets are called prompt, and have
an alternate characterization in terms of permitting). This shows that static and
dynamic properties can sometimes be equivalent; the static property of being low
cuppable is equivalent to the dynamic property of being prompt. The promptly
simple sets are then computationally strong, just as the low sets are weak: a c.e.
set is of the same degree as a promptly simple set exactly when, with the help of
some (computationally weak) low set, it can compute the halting problem.

It is natural to ask whether other notions of lowness share this property. In [2],
Downey, Greenberg, Miller, and Weber show that the answer is yes for another
lowness property, that of being array computable. In their main result, they show
that every promptly simple set is cuppable to 0′ by an array computable c.e. set.
In fact, their main result says more: the class of c.e. sets that can be cupped to 0′

by an array computable c.e. set properly contains the prompt sets. In contrast, the
K-trivials do not share this property: there is an incomplete c.e. set which bounds
the K-trivials (in fact, this set can be made low2 [7]), but every upper cone in the
c.e. sets (other than {0′}) contains an incomplete promptly simple set, so there
is an incomplete promptly simple set bounding the K-trivials. André Nies asked
the corresponding question for superlowness: is every promptly simple set cupped
to 0′ by some superlow c.e. set? This question attracted the attention of other
researchers; see e.g. [2]. In this paper, we answer Nies’s question.

Theorem 3.1. There is a promptly simple set which is not superlow cuppable.

One should note here that since the result of this paper was announced, André
Nies used techniques from effective randomness to prove that all c.e. sets possess-
ing another lowness property, that of being strongly jump traceable, are almost
superdeep, which means that their join with any superlow set is superlow. In par-
ticular, they are not superlow cuppable. Since it was known that there is a promptly
simple set which is strongly jump traceable, this gives a second proof of the main
result of this paper. (For details, see [7].) However, the direct construction provides
several advantages, such as different intuition and increased flexibility. The proof

PROMPTNESS DOES NOT IMPLY SUPERLOW CUPPABILITY 3

in this paper provides a strategy to meet requirements preventing a set from being
superlow cuppable, meaning that it can be combined with other constructions or
modified in ways that the randomness theoretic proof cannot.

1.1. Structure. We begin by giving the intuition behind the solution of the prob-
lem by going through potential strategies for either direction, building up to an
overview of the one that eventually works. This is done in section 2. We then
actually prove the theorem by constructing a promptly simple set which is not su-
perlow cuppable. The proof itself is in four parts. First we set up the requirements
(3.1) that we will actually satisfy to make a set which is prompt but not superlow
cuppable. The next section, 3.2, outlines the strategy used to satisfy a single neg-
ative requirement. The final two sections complete the proof: section 3.3 gives the
construction itself; and section 3.4 performs the final verification.

2. Intuition

In trying to understand this problem, the first thing to do is recall the proof
that every promptly simple set is low cuppable. Can it be modified to give us a
superlow set which cups? Does it, perhaps, already give us a superlow cupping set?
That proof is based on a simple and elegant idea. We are given a promptly simple
set B, and to make a low set A which cups with B, we build a reduction Θ and put
something new into A whenever we need to keep track of a change in ∅′. This looks
like it would prevent A from being made low, but we can preserve computations
ΦA

e (e) to make A low by asking B to let us move the use of ΘA⊕B(i), which we
imagine as a movable marker θ(i), past the use of ΦA

e (e), which we imagine as a
marker ϕ(e), “clearing” the computation. In this way we can keep track of changes
in ∅′ by making corresponding changes to A, but without making A nonlow. Since
B is promptly simple, it must eventually grant these requests.

2.1. A two player game. We imagine this as a two-player game, in the tradition
of Lachlan. In the low-cupping theorem, the blue player plays a low c.e. set A
against the red player’s promptly simple set B, in an attempt to make the join of
A and B complete. The proof that promptly simple sets are low cuppable is viewed
as a winning strategy for Blue, taking advantage of the fact that the prompt
simplicity of B ensures that Red must eventually grant Blue’s requests that B
change in order to clear computations. The question now is who has a winning
strategy if Blue is required to produce a superlow set. A key point in the low
cupping theorem is that Red’s promptly simple request-granting is only eventual.
Red can fail to respond to Blue’s requests as many times as he wants before finally
acceding, and this poses a serious problem when we consider the superlow case.

2.2. Blue’s difficulty in making A superlow. Let us examine now the superlow
case. The initial hurdle for Blue in making A superlow is that Red can wait
before clearing a computation, potentially until after Blue’s approximation to A′

has exceeded some computable bound. This is the first hint that the superlow
case may in fact go quite differently from the low case. When Blue is trying to
make the cupping set superlow, he has a counter running down that keeps track of
the number of changes he is allowed to make in some approximation to the jump.
Ideally, Red can just wait until this counter runs out, and only then enumerate
something into B to make it promptly simple. However, even though Blue has a
counter, only he decides when he changes his approximation. The two players are

4 DAVID DIAMONDSTONE

really engaged in a waiting game, and Red can’t afford to wait forever, but must
take positive action to make B promptly simple. If Red is to win, he must force
Blue to change his approximation to A′. However, Blue controls A, so can always
make any temporary computation ΦA

e (e)[s] at some stage s disappear by changing
A below the use. This looks hopeless for Red, and if we consider a single e in
isolation it is. Blue can keep changing A and never change his approximation to
A′ unless Red gives him a clear, as long as we are considering only a single e. Red’s
strategy must be to somehow exploit the interplay between different computations
ΦA

e (e) for different values of e.

2.3. Red’s strategy. Suppose that Red controls all of the functionals Φe. This
is not precisely true, but is true enough, since any threat Red might want to
make is reflected somewhere in those functionals. Red can play some computation,
say ΦA

10(10), with large use. However, since Blue can always wait for a clear,
we assume he eventually gets one, and the use marker ϕ(10) is cleared of all use
markers θ(i) for Blue’s computation except for those few he is willing to let injure
ΦA

10(10). At this point, Blue says, “Sure, ΦA
10(10) converges,” and changes his

approximation accordingly. But here is Red’s carefully laid trap: Red then plays a
new computation, say ΦA

0 (0), with the same use as ΦA
10(10). This new computation

is clear of all computations that Blue was willing to let injure the old computation
ΦA

10(10), but the new computation is more important, so Blue is unwilling to
allow the same level of injury. This puts Blue in a bind, because either he needs
to change his approximation to ΦA

0 (0) even though the use has not been cleared
of the necessary computations (a bad idea), or else he must issue a new request
to Red to clear this new computation. If Red fails to grant this request, then in
order to keep issuing new requests Blue must change A, intentionally injuring his
own approximation to whether ΦA

10(10) converges. This essentially allows Red to
continue attacking computations which Blue thought were cleared, and is the key
to the Red strategy.

3. The proof

Theorem 3.1. There is a promptly simple set B which is not superlow cuppable.

Proof. We will construct such a set B.

3.1. Setting up the proof.
We may buildB as a subset of the even numbers, and assume that prompt simplicity
is measured relative to subsets of the even numbers (in the sense of equation 1
below), since any such B is equal to ∅⊕ B̂ for some set B̂ which is promptly simple
in the usual way.1 We’ll make use of the fact that for any X, the condition X ≤tt ∅′
is equivalent to the following condition:

• X is ω-c.e., i.e. there is a uniformly computable sequence of functions gs

which approximates X:

x ∈ X ⇐⇒ lims→∞ gs(x) = 1

1This allows us to consider c.e. sets A which are subsets of the odds, and take as our oracle
A∪B instead of A⊕B. The advantage of this formulation is that it allows us to directly compare

the uses of functionals with oracle A and with oracle A ∪B, which simplifies matters later.

PROMPTNESS DOES NOT IMPLY SUPERLOW CUPPABILITY 5

and a computable function h which bounds the number of changes made
by the approximation g:

for all x, |{s : gs+1(x) 6= gs(x)}| ≤ h(x)

Thus A is superlow if and only if A′ is ω-c.e. When dealing with an enumeration of
possible candidates for such a sequence gs witnessing that A is superlow, we would,
at first glance, have to deal with partial as well as total functions. However, this
can be avoided by means of a trick.

Lemma 3.2. Let gs be a uniformly partial computable sequence of functions. Then
we can obtain (uniformly from an index for gs) a uniformly computable sequence ĝs

such that for all x, if g is total and lims gs(x) exists, then lims ĝs(x) = lims gs(x).
Moreover, the number of changes made by ĝ is no greater than that made by g:

for all x, |{s : ĝs+1(x) 6= ĝs(x)}| ≤ |{s : gs+1(x) 6= gs(x)}|+ 1

Proof. Let ĝs be defined as follows:

ĝs(x) =

{
gu(x) where u is the greatest t ≤ s such that gt,s(x)↓
0 if no such u exists

Fix x. Suppose lims gs(x) = i. Then there is some t so that gs(x) = i for all s ≥ t.
Let n be such that gt,n(x) ↓ . Now for s > max(t, n), we have ĝs(x) = gu(x) for
some u ≥ t, and hence ĝs(x) = i. Thus lims ĝs(x) = i as well.

For all s, let us be the u in the definition of ĝs(x), or -1 in the case that there
was no such u. Then the sequence us is monotonically increasing. For any s with
ĝs+1(x) 6= ĝs(x), therefore, either us = −1, or gus+1(x) 6= gus

(x), so there is some t,
with us ≤ t < us+1, such that gt+1(x) 6= gt(x), and which is unique to s. Therefore
we have

|{s : ĝs+1(x) 6= ĝs(x)}| ≤ |{s : gs+1(x) 6= gs(x)}|+ 1

as claimed. �

To ensure that B is not superlow cuppable, we need to meet, for each collection
A,Θ, gs, h (where A is a c.e. subset of the odd numbers, Θ is a Turing functional,
gs is a uniformly computable sequence of {0, 1}-valued functions (made total using
the trick from lemma 3.2), and h is (partial) computable) the condition

If ∅′ = ΘA∪B and lims gs = A′,

then for some x, either h(x)↑ or |{s : gs(x) 6= gs−1(x)}| > h(x).

If any of these conditions are not fulfilled, that produces an A with ∅′ ≤T A∪B and
moreover the set A′ is ω-c.e. Since any c.e. set is computable in ∅′, we can use this
fact to show that A ∪ B can compute any c.e. set C. Similarly, JA = λe.ΦA

e (e) is
universal for partial-A-computable functions, so if A′ = dom JA is ω-c.e., so is the
domain of any A-computable partial function. Conversely, if we can build some c.e.
set C and some Turing functional Ψ satisfying the requirement below, then B will
not be superlow cuppable. Let (Ak,Θk, g

k
s , hk) be a uniform listing of all possible

collections A,Θ, gs, h. It suffices to satisfy, for all k, the requirement

Rk : If C = ΘAk∪B
k and lims g

k
s = dom ΨAk ,

then for some x, either hk(x)↑ or |{s : gk
s+1(x) 6= gk

s (x)}| > hk(x)

6 DAVID DIAMONDSTONE

We also need to make B promptly simple; that is, to ensure that 2ω \B is infinite
and satisfy, for all e, the positive requirement

(1) Pe : If |Ve| =∞, then (∃s)(∃x)x ∈ Ve, at s ∩Bs

where Ve is an effective listing of all c.e. subsets of the evens, and Ve, at s denotes
the difference Ve,s \Ve,s−1. This ensures that B is promptly simple via the identity
function.

Our strategy for building the set B will be just as one would expect: we will
place some restraints on B, and if at some stage s a new element enters Ve, the
requirement Pe is not yet satisfied, and the element is not restrained by a higher
priority restraint, we immediately place it in B. The whole construction is therefore
in designing the restraints, and in building the set C and the functional Ψ.

3.2. Meeting a single requirement Rk. For convenience, we will drop the sub-
script k when no confusion will result. To meet requirement Rk, we produce a
sequence e0 < e1 < e2 < · · · with the intention that for some en, the number of
times the approximation gs changes its mind on en is greater than h(en). This
may fail to happen, but only if gs fails to approximate dom ΨA or the functional
ΘA∪B fails to compute C. The result will be that Rk is satisfied because either
C 6= ΘA∪B , dom ΨA 6= lims gs, or h does not bound the number of “mind-changes”
made by gs.

The current stage will always be denoted s. We assume that at all stages, ΘAs∪Bs

is correctly computing Cs on the places of interest (which will be a set D defined
below), and gs(e) = 0 whenever ΨA(e)↑ [s]. Otherwise we can wait for one or the
other to catch up.

The procedure to defeat the given A,Θ, gs, h corresponding to Rk is the following:
(1) Pick a follower e0, and wait for h(e0)↓ . When it does, pick a set D ⊂ ω of

size h(e0) + 1. Set n = 0.

(2) Pick a follower en+1, wait for h(en+1)↓ .

(3) Put u = max{θ(x) : x ∈ D}, and enumerate (en+1, As � u) into the graph
of Ψ. Now Ψ(en+1) ↓ with use u. Wait for gs(en+1) = 1. If, before this
happens, either A � u or B � u changes, do the following:
(a) If A � u changes, but not B � u, return to the beginning of step 3.
(b) If B � u changes, cancel en+1 and go to step 2.

When gs(en+1) = 1, set m = n, then increase n by 1.

(4) Enumerate (em, As � u) into the graph of Ψ, so Ψ(em)↓ with the same use
u as in step 3. Impose B-restraint of priority m+k and wait for gs(em) = 1.
If, before this happens, either A � u or B � u changes, do the following:
(a) If A � u changes, but not B � u, increase n by 1 and go to step 2.
(b) If B � u changes, cancel em, em+1, . . . , en. Set n = m − 1. If m > 0,

go to step 2; if m = 0, cancel D and go to step 1.
When gs(em) = 1, if m > 0, decrease m by 1 and go to the beginning of
this step. If m = 0, continue to the next step.

(5) Enumerate an element of D \ C into C. Increase n by 1 and go to step 2.

In addition to following the steps outlined above, we need to ensure that ΘAs∪Bs

is correctly computing Cs on D, and gs(e) = 0 whenever ΨAs(e) ↑ [s] on any of
our followers e. So, whenever A � u changes and so ΨAs(e) becomes undefined on

PROMPTNESS DOES NOT IMPLY SUPERLOW CUPPABILITY 7

one of our followers, we wait for gs(e) = 0 before carrying out further instructions.
Similarly, whenever A � u, B � u, or C � D changes, we wait for ΘAs∪Bs � D =
Cs � D before carrying out further instructions. In particular, this means that
there is a hidden wait instruction in step 5 because once we change C, we have to
wait for ΘA∪B to change in response. Note that the steps of this procedure are
not presumed to take place during a single stage of the construction. There is an
important point to make: “waiting” does not mean halting all action while waiting
for (e.g.) h(e) to converge (which may never happen). When the procedure gives a
“wait” instruction, it is telling the construction not to perform any further actions
as part of this procedure until the given condition is met, but to continue to perform
actions in procedures for other requirements which may be running in parallel, and
to continue to enumerate unrestrained elements into B, whenever instructed to do
so, in order to make B promptly simple.

We can immediately check that this construction is well-defined. Firstly, every
time it gives an instruction to choose a follower/agitator, the previous one (if any)
will have been canceled. Secondly, any time some Ψ(e) ↓ for a follower e used in
the procedure, the use will be the same u = max{θ(x) : x ∈ D}, and an instruction
will be given to redefine Ψ(e) only after an A change below u allows us to do so, or
we have cancelled the old e and chosen a new one. Additionally, we point out that
since the only B-restraint imposed has priority m+k, the procedure for Rk imposes
restraint only of priority k and lesser priorities. Finally, we have the following:

Lemma 3.3. If the procedure for Rk is permanently stuck in a wait step, it succeeds
and Rk is satisfied.

Proof. The only wait steps are to wait for some h(e) to converge, to wait for gs(e) =
0 (respectively 1) when Ψ(e)↑ (respectively, Ψ(e)↓), and to wait for ΘAs∪Bs � D =
Cs � D. So if the procedure is permanently stuck in a wait step, it succeeds because
either h fails to be total, lims gs fails to compute domΨ, or Θ fails to compute C. �

This leaves two possibilities: either the procedure will at some point reach its
goal and be stopped by the construction, or else it will continue to take actions
forever. The latter is possible, but will result in only finite restraint of any given
priority, and Rk will still be satisfied in this case as ΘA∪B will not be total.

3.3. Construction.

Stage s = 0: Set B0 = ∅, C0 = ∅, graph Ψ = ∅.

Stage s > 0: Begin the procedure for Rs−1.
For any k (which will necessarily be at most s−1) and any follower e being used

by the procedure for Rk, if the amount of changes made by the approximation gk

thus far exceeds the bound:

|{t < s : gk
t+1(e) 6= gk

t (e)}| > hk(e)

immediately halt the procedure for Rk. Otherwise continue each procedure cur-
rently in progress one step further.

If a new element x > 4e enters Ve, the requirement Pe is not yet satisfied, and x
is not restrained by a restraint of priority p ≤ e, enumerate x into Bs.

This ends the construction.

8 DAVID DIAMONDSTONE

3.4. Verification.

Lemma 3.4. There are finitely many restraints of any given priority p imposed
over the course of the construction.

Proof. Since the strategy for requirement Rk imposes restraint of priority k or of
lesser priority, it suffices to show that each given strategy imposes restraint of each
priority at most finitely often. Suppose instead that the strategy for Rk imposes
priority p restraint infinitely often. (Note: p ≥ k.) The strategy for Rk must impose
priority p restraint infinitely often after some stage when each requirement Pj for
j < p+ 1 which ever acts has already acted, since each acts at most once.

Priority p restraint is imposed every time step 4 is performed, with m = p− k.
Each time this happens, there is a change to gk

s (em), or else there is a change
to gk

s (em+1). There cannot have been a B change, because B is restrained and
we assumed that each positive requirement capable of violating the restraint has
already acted or will never act. So each time restraint is imposed there is a mind-
change by g on either em or em+1. Moreover, though em or em+1 can be cancelled
during the construction, they cannot be at this point because they are only cancelled
when a B change violates restraint. So there is some e (either em or em+1) such
that the change set

{t : gk
t+1(e) 6= gk

t (e)}
is infinite. But then there is some stage s by which its size has exceeded the bound:

|{t < s : gk
t+1(ek

n) 6= gk
t (ek

n)}| > hk(ek
n)

(we guaranteed that hk(e) converged in step 1 or 2), and so the procedure for Rk is
halted, and no more restraint is ever imposed for requirement k, giving the desired
contradiction. �

Corollary 3.5. The set B constructed is promptly simple.

Proof. Fix e. The total amount of restraint of priority p ≤ e is finite. If Ve is
infinite, then eventually some element larger than all priority p ≤ e restraint enters
Ve, and then immediately afterwards enters B. So B is promptly simple via the
identity function. (We know that B ∩ 2ω is infinite since requirement Pe puts at
most one element x into B, and only if x > 4e, so B contains at most e of the first
2e even numbers.) �

Lemma 3.6. The set B is not superlow cuppable.

Proof. Suppose that B is superlow cuppable. Then for some k the requirement Rk

is violated. Let us examine the strategy for Rk. By lemma 3.3, if the procedure
for Rk is permanently stuck in a wait step, then Rk is satisfied. We may therefore
assume that all steps in the procedure halt. Furthermore, since the procedure itself
only halts when Rk is satisfied, we may assume that the procedure never halts, and
so infinitely often carries out, to completion, at least one of the steps 1–5. Step 1
is carried out only when the procedure is first called or after a B change violates a
restraint of priority k, so in particular at most finitely often.

Any time step 2 is carried out it is immediately followed by step 3, and any time
step 4 is carried out it is immediately followed by step 1 or step 2, so it must be
the case that step 3 is carried out infinitely often after the step 1 is carried out
the final time. Each time step 3 is carried out, either there is an A or B change
below u = max{θ(x) : x ∈ D}, or the procedure goes to step 4. Each time step 4 is

PROMPTNESS DOES NOT IMPLY SUPERLOW CUPPABILITY 9

carried out, there is either an A or B change below u, or the procedure goes to step
5. Finally, each time step 5 is carried out, there must be an A or B change below
u before any further steps are taken, since C changes, and the only way ΘA∪B and
C can be brought back into agreement is an A or B change below u. So every time
step 3 is carried out, there is an A or B change below max{θ(x) : x ∈ D} before it
is carried out again, so there are infinitely many changes below max{θ(x) : x ∈ D}.
(Note that D only changes when step 1 is carried out, so the D here is always the
same.) This is only possible if one of these θ markers moves infinitely often, so Rk

is satisfied because Θ is not total. �

References

[1] K. Ambos-Spies, C. G. Jockusch, Jr., R. A. Shore and R. I. Soare, An algebraic decom-
position of the recursively enumerable degrees and the coincidence of several degree classes

with the promptly simple degrees, Transaction of the American Mathematics Society, vol.

281 (1984), pp. 109–128.
[2] R. Downey, N. Greenberg, J. Miller, and R. Weber, Prompt simplicity, array com-

putability and cupping, in Chong, Feng, Slaman, Woodin, and Yang (eds.), Computational

Prospects of Infinity, Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore, vol. 15, World Scientific (2008), pp. 59–78.

[3] R. Downey, N. Greenberg, and R. Weber, Totally ω-computably enumerable degrees I:

bounding critical triples, Journal of Mathematical Logic vol. 7 (2007), pp. 145–171.
[4] R. Downey, D. R. Hirschfeldt, A. Nies, and S. A. Terwijn, Calibrating Randomness,

Bulletin of Symbolic Logic, vol. 12 (2006), pp. 411–491.

[5] A. Kučera and T. A. Slaman, Low upper bounds of ideals, to appear.
[6] André Nies, Lowness properties and randomness, Advances in Mathenatics, vol. 197 (2005),

pp. 274–305.
[7] André Nies, Computability and Randomness, Clarendon Press, Oxford, to appear.

[8] Robert I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Heidelberg,

1987.
[9] Robert I. Soare, Computability Theory and Applications, Springer-Verlag, Heidelberg, to

appear.

University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637

E-mail address: ded@math.uchicago.edu

