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Abstract. Let r be a real number in the unit interval [0, 1]. A set A ⊆ ω is said
to be coarsely computable at density r if there is a computable function f such that
{n | f(n) = A(n)} has lower density at least r. Our main results are that A is
coarsely computable at density 1/2 if A is either computably traceable or truth-table
reducible to a 1-random set. In the other direction, we show that if a degree a is
either hyperimmune or PA, then there is an a-computable set which is not coarsely
computable at any positive density.

1. Introduction

In recent years, a number of investigators have considered algorithms which fre-
quently yield correct answers but may diverge or yield wrong answers on some inputs.
Here “frequently” is often measured using (asymptotic) density or lower density, so we
review the definitions of these.

For A ⊆ ω, and n > 0, define

ρn(A) =
|A ∩ {0, 1, . . . , n− 1}|

n
.

The upper density of A, denoted ρ(A), is defined as lim supn ρn(A) and the lower density
of A, denoted ρ(A), is defined as lim infn ρn(A). The density of A, denoted ρ(A), is
defined as limn ρn(A), provided that this limit exists. By the strong law of large
numbers, almost every set (in the usual coin-toss measure on 2ω) has density 1/2. On
the other hand, the sets A with ρ(A) = 0 and ρ(A) = 1 (and so ρ(A) undefined) are
comeager in the usual topology on 2ω.

One major notion of frequent computability is generic computability. This has been
applied to analyze the complexity in the generic case of decision problems in group
theory (see, for example, [8]). A set A ⊆ ω is generically computable if there is a
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partial computable function ψ such that ψ(n) = A(n) for all n in the domain of ψ,
and this domain has asymptotic density 1. Generic computability for subsets of ω is
studied in [6], and connections between asymptotic density and computability theory
are studied in [3].

Suppose now that we wish to consider frequently correct algorithms which always
yield an output. Then we must allow the possibility of some incorrect answers. A
set A is coarsely computable if there is a (total) computable function f such that
{x | A(x) = f(x)} has density 1. Coarse computability and generic computability are
independent in the sense that neither implies the other [6, Theorems 2.15 and 2.26].

Weakenings of these notions have also been considered, where sets of density 1 are
replaced by sets whose lower density is at least a given number.

Definition 1.1. Let r be a real number in the interval [0, 1] and let A ⊆ ω.

(i) [3, Definition 5.9] A is computable at density r if there is a partial computable
function ϕ such that ϕ(n) = A(n) for all n in the domain of ϕ, and this domain
has lower density at least r.

(ii) [4] A is coarsely computable at density r if there is a total computable function f
such that {n | f(n) = A(n)} has lower density at least r.

Note that we use lower density rather than upper density in these definitions since
we wish our algorithms to function well from some point on, rather than just infinitely
often. Also note that a set A is generically computable if and only if it is computable
at density 1, and A is coarsely computable if any only if it is coarsely computable at
density 1.

These definitions suggest measuring the complexity of a set A by considering {r |
A is computable at density r}, or the analogous set for coarse computability at den-
sity r. As these sets are closed downward in the unit interval, we instead just consider
their sups.

Definition 1.2. Suppose A ⊆ ω.

(i) [3, Definition 6.9] The asymptotic computability bound of A is

α(A) := sup{r | A is computable at density r}.
(ii) [4] The coarse computability bound of A is

γ(A) := sup{r | A is coarsely computable at density r}.

As an example, note that if A is a 1-random set, then α(A) = 0 and γ(A) = 1/2. In
fact, to get that α(A) = 0, it suffices to assume that A is weakly 1-random, and to get
that γ(A) = 1/2 it suffices to assume that A is Schnorr random.

Note that if A is generically computable, then α(A) = 1, and if A is coarsely com-
putable, then γ(A) = 1. The converse of each statement fails. (This is proved for α
in [3, Observation 5.10], and the same argument works for γ, since R(A), as defined
there, is coarsely computable only when A ≤T 0′ by [6, Theorem 2.19].)

It is shown in [6, Theorem 2.20] that every nonzero Turing degree contains a set which
is neither coarsely computable nor generically computable. This suggests associating
numbers with degrees a which calibrate the extent to which all sets of degree at most a
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are approximable by frequently correct algorithms. This turns out to be interesting
only for coarse computability, as it turns out that every nonzero Turing degree contains
a set which fails to be generically computable in a very strong sense, as explained in
the next paragraph.

Miasnikov and Rybalov [10] defined a set A to be absolutely undecidable if every
partial computable function ϕ such that ϕ(x) = A(x) for all x in the domain of ϕ has
a domain of density 0. (Note that this implies that α(A) = 0, and it is easily seen
that the converse fails.) Bienvenu, Day, and Hölzl [1] proved that every nonzero degree
contains an absolutely undecidable set. Their proof uses an error-correcting code, the
Walsh-Hadamard code.

However, it does turn out to be interesting to associate a number with each de-
gree a which measures the extent to which all a-computable functions are coarsely
approximable, as we attempt to demonstrate in this paper.

Definition 1.3. The coarse computability bound of a degree a is given by:

Γ(a) = inf{γ(A) | A is a-computable}.

As mentioned, it was shown in [6, Theorem 2.20] that every nonzero degree contains
a set which is not coarsely computable. It is natural to try to refine this by showing
that Γ(a) is “small” in some sense for every nonzero degree a. The next result, due to
Hirschfeldt, Jockusch, McNicholl and Schupp, is a step in that direction.

Proposition 1.4. ([4]) If a is a nonzero degree, then Γ(a) ≤ 1/2.

Proof. It suffices to show that for every noncomputable set A there is a set B ≡T A
such that γ(B) ≤ 1/2. The idea is to code each bit of A by many bits of B so that
an algorithm for B which is correct more than half the time yields an algorithm for A
which is correct with only finitely many errors, by “majority vote.”

For each n, let In = {k ∈ ω | n! ≤ k < (n+ 1)!}. For any set A, define

I(A) = ∪n∈AIn.
We claim that I(A) ≡T A and γ(I(A)) ≤ 1/2. The first statement is obvious. To see
that γ(I(A)) ≤ 1/2, assume for a contradiction that I(A) is coarsely computable at
some density greater than 1/2. Let f be a computable function such that {x | f(x) =
I(A)(x)} has lower density greater than 1/2. Then, for all sufficiently large n, we have
f(x) = I(A)(x) for strictly more than half of the elements of In. It follows that, for
all sufficiently large n, n belongs to A if and only if f(x) = 1 for at least half of the
numbers x ∈ In. Hence, A is computable, which is the desired contradiction. It follows
that γ(I(A)) ≤ 1/2. �

Let I(A) be as defined in the above proof. Note that, for every A, I(A) is coarsely
computable at density 1/2, since I(A) agrees with the set of even numbers on a set of
lower density at least 1/2. It follows that γ(I(A)) = 1/2 for all noncomputable sets A.
Hence, the above result cannot be improved without using a different construction. In
the next few results, we give some improvements for certain classes of degrees.

Definition 1.5. (S. Kurtz [7]) A set A is weakly 1-generic if A meets every dense
c.e. set of binary strings. (Here, if S is a set of binary strings, S is called dense if
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every string has an extension in S, and A meets S if (the characteristic function of) A
extends some string in S.)

Proposition 1.6. ([4]) If A is weakly 1-generic, then γ(A) = 0.

Proof. Let f be a computable function. We must show that {k | f(k) = A(k)} has
lower density 0. For each n, j > 0, define

Sn,j = {σ ∈ 2<ω : |σ| ≥ j &
{k < |σ| | σ(k) = f(k)}

|σ|
<

1

n
}.

Then each Sn,j is computable and dense, so A meets each Sn,j. It follows that {k |
f(k) = A(k)} has lower density 0. �

Since Kurtz has shown [7, Corollary 2.10] that every hyperimmune set computes a
weakly 1-generic set, we have the following corollary:

Corollary 1.7. Every hyperimmune degree a satisfies Γ(a) = 0.

A degree a is called PA if every nonempty Π0
1 class P ⊆ 2ω has an a-computable

element. Many characterizations of the PA degrees can be found in [2, Section 2.21],
for example.

Proposition 1.8. If a is PA, then Γ(a) = 0.

Proof. Consider the Π0
1 class

{X | (∀e)(∀x ∈ Ie)[ϕe(x) ↓ → X(x) 6= ϕe(x)]}
where Ie = [e!, (e + 1)!). It is easy to see that this class is nonempty, and for every X
in the class, γ(X) = 0. Hence this class has an a-computable element. �

Of course, it follows by well-known basis theorems that {a | Γ(a) = 0} contains
both hyperimmune-free and low degrees. This raises the question of whether this
class contains all nonzero degrees. A positive answer would be a weak analogue of
the Bienvenu-Day-Hölzl theorem [1] that every nonzero degree contains an essentially
undecidable set. However, in this paper, we obtain a negative answer to this question
in two different ways, and these are our main results. In fact, we prove that there is
a nonzero degree a such that Γ(a) = 1/2. The following definition, which is a uniform
version of being hyperimmune-free, plays a key role in our first main result.

Definition 1.9. (Terwijn, Zambella [11]) The set A is computably traceable if there is
a computable function p such that for every function f ≤T A there is a computable
function g such that, for all n,

(i) f(n) ∈ Dg(n)

(ii) |Dg(n)| ≤ p(n)

Here Dz is the finite set with canonical index z.

Note that p here must be independent of f . If the above holds, we say that A is
computably traceable via p. As is shown in [11], if A is computably traceable, then A
is computably traceable via every computable, nondecreasing, unbounded function h
with h(0) > 0. Note that the standard construction of a hyperimmune-free degree
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with computable perfect trees, due to W. Miller and Martin [9], produces a set which
is computably traceable via λn2n. As pointed out in [11], this construction can easily be
modified to show that there exist a continuum of computably traceable sets. A degree a
is called computably traceable if there is a computably traceable set of degree a, in which
case every set of degree a is also computably traceable. The computably traceable sets
have played an important role in the study of algorithmic randomness, as explained
in [2, Chapter 12].

Our first main result is the following:

Theorem 1.10. If the set A is computably traceable, then A is coarsely computable at
density 1/2.

Corollary 1.11. (i) If a is a nonzero computably traceable degree, then Γ(a) =
1/2.

(ii) There is a degree a such that a ≤ 0′′ and Γ(a) = 1/2.
(iii) There exist continuum many degrees a such that Γ(a) = 1/2.

Our second main result is the following:

Theorem 1.12. If the set X is 1-random and A is truth-table reducible to X, then A
is coarsely computable at density 1/2.

Corollary 1.13. (i) If x is a hyperimmune-free 1-random degree, then Γ(x) =
1/2.

(ii) There is a DNC degree x ≤ 0′′ such that Γ(x) = 1/2.

Proof. For (i), let X be a 1-random set of degree x. By a result of D. A. Martin
(see [2, Proposition 2.17.7]), if A ≤T X then A ≤tt X, since x is hyperimmmune-free.
It follows from the theorem that Γ(x) ≥ 1/2, and Γ(x) ≤ 1/2 by Proposition 1.4.

To prove (ii), let P ⊆ 2ω be a non-empty Π0
1 class such that every element of P is

a 1-random set. Then P has an element X ≤T 0′′ of hyperimmune-free degree, by the
hyperimmune-free basis theorem (see [2, Theorem 2.19.11]) and its proof. If x is the
degree of X, then Γ(x) = 1/2 by part (i), and x is DNC by Kučera’s theorem that
every 1-random set computes a DNC function (see [2, Theorem 8.8.1]). �

To summarize, we know that Γ(0) = 1, Γ(a) ≤ 1/2 for all a > 0, Γ(a) = 0 for all
degrees which are hyperimmune or PA, and Γ(a) = 1/2 for every degree a which is
either nonzero and computably traceable or hyperimmune-free and 1-random. We do
not know whether Γ takes values other than 0, 1/2, and 1.

2. Proof of our first main result

In this section we prove Theorem 1.10, except for a combinatorial lemma which
is proved in the next section. We start by partitioning the natural numbers into
consecutive intervals J1, J2, . . . , where |Jn| = n for all n. If A is computably trace-
able, we can effectively find a set Tn of n strings of length n such that some string
in Tn describes A � Jn. Then using our combinatorial lemma we can effectively find
a string βn which approximates all strings in Tn with only slightly more than n/2
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errors. Then concatenating these strings βn in order yields a computable set B such
that ρ({k | A(k) = B(k)}) ≥ 1/2 so that A is coarsely computable at density 1/2.

We now give the details of the argument. In the Hamming space 2n, we define the
(normalized) distance between two strings σ and τ of length n to be:

d(σ, τ) =
|{k < n | σ(k) 6= τ(k)}|

n
.

If σ ∈ 2n and T is a nonempty subset of 2n, we define the distance from σ to T to be

d̂(σ, T ) = max{d(σ, τ) | τ ∈ T}.
Thus the distance between a string and a set of strings of the same length is the greatest
distance between the string and any string in the set.

Lemma 2.1. Let ε be a positive real number. Then if n is sufficiently large and T is
a set of n strings of length n, there exists σ ∈ 2n such that d̂(σ, T ) ≤ 1/2 + ε.

Intuitively, given any tolerance ε > 0, if n is sufficiently large, we can “approximate”
any n given strings of length n by a single string of length n which is at distance at
most 1/2 + ε from each of the given strings.

The lemma follows easily from a convergence bound (Chernoff’s Inequality) for the
weak law of large numbers. We will prove it in Section 3. In fact, we will show by
probabilistic reasoning that for any ε > 0 and any sufficiently large n, for any set T of n
strings of length n, “most” strings σ of length n satisfy the conclusion of the lemma,
because the probability of not satisfying it is so small. Of course, such probabilistic
arguments are frequently used in combinatorics. This lemma will be proved in the next
section.

For the rest of this section, we focus on using the above lemma to prove Theo-
rem 1.10, which asserts that every computably traceable set is coarsely computable at
density 1/2.

Proof of Theorem 1.10. Let A be a computably traceable set. We identify A with the
infinite binary sequence A(0)A(1)..., where A(i) = 1 if and only if i ∈ A. Let this
sequence be decomposed as α1

_α2
_ . . . , where αi is a binary string of length i. For

example, α3 is the string A(3)A(4)A(5). Since A is computably traceable, there are
uniformly and canonically computable finite sets T1, T2, . . . such that αn ∈ Tn and
|Tn| ≤ n for all n > 0. Here we may assume without loss of generality that each Tn is
a set of n strings of length n.

We now wish to define a computable set B such that {n | A(n) = B(n)} has
lower density at least 1/2. We define (using the same identifications as for A) B =
β1

_β2
_ . . . , where βn is a string of length n which is as close to Tn as possible, that

is d̂(βn, Tn) ≤ d̂(β, Tn) for all β ∈ 2n. It is clear that such a closest string exists and
can be chosen effectively, so we may make B computable by always picking the least
candidate for βn. Thus we are making B close to A by making each βn as close as
possible to Tn, where αn ∈ Tn.

Let C = {k | B(k) = A(k)}. We claim that ρ(C) ≥ 1/2, so that A is computable
at density 1/2. Let tn be the nth triangular number n(n + 1)/2, so that tn is the
length of β1

_β2
_ . . ._ βn. If F is a nonempty finite set, define the density of C on F ,
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denoted ρ(C|F ), to be |C∩F ||F | . We first consider the density of C on the intervals Jn,

where J1 = {0} and Jn = [tn−1, tn) for n > 0, so |Jn| = n for all n.

Lemma 2.2. lim infn ρ(C|Jn) ≥ 1/2.

Proof. To prove the lemma, let ε > 0 be given. We must show that ρ(C|Jn) ≥ 1/2− ε
for all sufficiently large n. By definition,

ρ(C|Jn) =
|{k ∈ Jn | A(k) = B(k)}|

n
=
|{k < n | αn(k) = βn(k)}|

n
= 1− d(αn, βn).

Also, for all sufficiently large n, d(βn, αn) ≤ d̂(βn, Tn) ≤ 1/2 + ε by Lemma 2.1. Hence,
as needed, it follows that ρ(C|Jn) ≥ 1/2− ε for all sufficiently large n. �

We now consider the lower density of C on sets of the form ∪i≤nJi = [0, tn).

Lemma 2.3. lim infn ρtn(C) ≥ 1/2.

Proof. Let ε > 0 be given. We must show that ρtn(C) ≥ 1/2 − ε for all sufficiently
large n. By the previous lemma, we have ρ(C|Jn) ≥ 1/2−ε/2 for all sufficiently large n.
Hence, there is a finite set F such that ρ(C ∪ F |Jn) ≥ 1/2 − ε/2 for all n. Note that
ρtn(C ∪ F ) is a weighted average of the numbers ρ(C ∪ F |Ji) for i ≤ n. Since all the
latter numbers are ≥ 1 − ε/2, it follows that ρtn(C ∪ F ) ≥ 1 − ε/2 for all n. Since F
is finite, ρtn(F ) ≤ ε/2 for sufficiently large n. Hence we have ρtn(C) ≥ 1/2 − ε for all
sufficiently large n, which establishes the lemma. �

We now must consider values of ρk(C), when k is not a triangular number. These
values are easily reduced to the previous case because the triangular numbers grow
slowly, in the sense that limn

tn+1

tn
= 1. Specifically, suppose that tn < k ≤ tn+1. Then

ρk(C) =
|C ∩ {0, 1, . . . , k − 1}|

k
≥ tn · ρtn(C)

tn+1

.

As k tends to infinity, n also tends to infinity, and tn
tn+1

tends to 1, so

ρ(C) = lim inf
k

ρk(C) ≥ lim inf
n

ρtn(C) ≥ 1/2

as needed to complete the proof of the theorem. �

3. Proof of Lemma 2.1

We use a probabilistic argument to prove our combinatorial lemma, Lemma 2.1.
Suppose a fair coin is thrown n times. Let pn be the probability that heads are obtained
on at most 49% of the throws. Then, by the weak law of large numbers, limn pn = 0.
Of course, the same holds if we replace 49% by any fixed real number less than 1/2.
The key to proving Lemma 2.1 is Chernoff’s inequality, which shows that pn goes to 0
exponentially fast. We write P (A) for the probability of the event A when the intended
probability space is clear from context.

Theorem 3.1. (Chernoff’s Inequality). (See [10, Theorem 4.2].) Let the random
variable S be binomially distributed with parameters n and p, so we can think of S as
the number of heads obtained in n independent tosses of a possibly biased coin, where p
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is the probability of heads on each individual toss. Let µ be the expected value of S, so
µ = np. Suppose 0 ≤ δ ≤ 1. Then

P (S < (1− δ)µ) < e−µδ
2/2.

Proof of Lemma 2.1. Let ε > 0 be given and let T be a set of n binary strings of
length n. To prove Lemma 2.1 we wish to show that if n is sufficiently large (depending

only on ε), there is a string σ ∈ 2n with d̂(σ, T ) < 1/2 + ε, i.e., d(σ, τ) < 1/2 + ε for all
τ ∈ T . Let 0n be the string of length n consisting of all 0’s. Define

bn,ε = 2−n|{σ ∈ 2n | d(σ, 0n) < 1/2− ε}|.
Thus bn,ε represents the probability that a string σ ∈ 2n chosen uniformly at random
has fewer than n(1/2− ε) 1’s. By the homogeneity of Hamming space, bn,ε would have
the same value if 0n were replaced in its definition by any fixed string τ ∈ 2n. Thus,
for each string τ ∈ 2n

(1) P (d(σ, τ) < 1/2− ε) = bn,ε

for σ ∈ 2n chosen uniformly at random.
Now define the random variable Sn as the number of 1’s in a string σ ∈ 2n chosen

uniformly at random. Thus Sn = nd(σ, 0n), where σ is chosen uniformly at random.
We can think of σ as determined by n tosses of a fair coin, so Sn is a binomially dis-
tributed random variable with parameters n and 1/2 and µ = n/2. Then by Chernoff’s
inequality applied to Sn with δ = 2ε,

P (Sn < n(1/2− ε)) = P (Sn < (1− 2ε)
n

2
) < e−(n/2)(2ε)2/2.

Since P (Sn < (1− 2ε)n
2
) = bn,ε by definition of bn,ε, we have

(2) bn,ε < e−nε
2

Fix τ ∈ 2n. Let τ be the string of length n which is complementary to τ , so τ(i) = 1
if and only if τ(i) = 0 for i < n. Note that, for every σ ∈ 2n, d(σ, τ) = 1 − d(σ, τ).
Hence, if σ ∈ 2n is chosen uniformly at random,

(3) P (d(σ, τ) > 1/2 + ε) = P (d(σ, τ) < 1/2− ε) = bn,ε

where the final equality uses Equation (1).
Suppose again that σ is chosen uniformly at random from 2n. For each fixed τ ∈ T ,

by Equations (2) and (3), the probability that d(σ, τ) > 1/2 + ε is at most e−nε
2
.

Since |T | = n and the probability of a finite union of events is at most the sum of
their probabilities, the probability that there exists τ ∈ T with d(σ, τ) > 1/2 + ε is

at most ne−nε
2
. It follows that the probability that d̂(σ, Tn) ≤ 1/2 + ε is at least

1− ne−nε2 . Since the latter approaches 1 as n as approaches infinity, it is positive for
all sufficiently large n. Hence, for all sufficiently large n, there exists σ ∈ 2n such that
d̂(σ, Tn) ≤ 1/2 + ε, as needed to prove Lemma 2.1. �

Remark. Instead of using Chernoff’s Inequality, we could instead use Chebyshev’s In-
equality, which is better known but not as powerful in our context. It asserts that if X
is a random variable with mean µ and finite variance σ, then

P (|X − µ| ≥ t) ≤ σ2/t2.
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From this we calculate that, if σ ∈ 2n is chosen randomly, then

P (d(σ, 0n) < 1/2− ε) < 1/(4nε2)

(see [5, pages 101-102]). If we then require of the trace {Tn} that |Tn| = o(n), i.e.

limn
|Tn|
n

= 0, and weaken the statement of Lemma 2.1 accordingly, the proof still goes
through.

4. Proof of Theorem 1.12

In this section we prove Theorem 1.12, which asserts that if A is a set which is truth-
table reducible to some 1-random set, then A is coarsely computable at density 1/2.
We use a characterization of 1-randomness due to Solovay (see [2], Theorem 6.2.8).
Namely, a Solovay test is a sequence {Sn} of uniformly Σ0

1 subsets of 2ω such that∑
n µ(Sn) converges, where µ is Lebesgue measure. A set X passes this test if X

belongs to Sn for only finitely many n. Then X is 1-random if and only if X passes
every Solovay test.

Fix a truth-table functional Φ, i.e., Φ is a Turing functional, and ΦX is total for
every set X ⊆ ω. Assume that A = ΦY for some 1-random set Y . Our goal is to
give a Solovay test {Sn} such that ΦX is coarsely computable at density 1/2 for every
set X which passes the test. Since Y is 1-random, it must pass the test {Sn} and
hence ΦY = A is coarsely computable at density 1/2. In fact, we give a computable
set B (dependent only on Φ) such that the lower density of {k | ΦX(k) = B(k)} is
at least 1/2 for every set X which passes the test. As in the proof of Theorem 1.10,
we obtain B as β1

_β2
_ . . . where βn is a string of length n for each n. For each

set X, let ΦX be decomposed as αX1
_αX2

_ . . . , where each αXn is a string of length n.
Let ε1 = ε2 = 1/2 and εn = 1/ log n for n ≥ 3. (These numbers are chosen to be
sufficiently small that limn εn = 0 and yet sufficiently large that we can eventually use
Chernoff’s Inequality to show that our {Sn} is a Solovay test.) We now choose βn so
as to maximize the probability βn and αXn agree on at least n(1/2− εn) arguments. In
more detail, for each string β of length n, let m(n, β) be the Lebesgue measure of the
set of X such that αXn and β agree on at least n(1/2− εn) arguments. Note that m is a
computable function of n and β. Define βn so that m(n, βn) ≥ m(n, β) for all β ∈ 2n.
Then B = β1

_β2
_ . . . is a computable set.

Let Sn be the set of X such that αXn and βn disagree on more than n(1/2 + εn)
arguments. We will show that {Sn} is a Solovay test, but we defer the proof of this for
now.

Fix a set X which passes the test {Sn}, i.e., X belongs to Sn for only finitely many n.
Let A = ΦX , and let C = {k | A(k) = B(k)}. We will show that C has lower density
at least 1/2. The next lemma is a special case of this.

Lemma 4.1. lim infn ρt(n)(C) ≥ 1/2.

Proof. If ε > 0, we have ρ(C|Jn) ≥ 1/2− ε for all sufficiently large n, since ρ(C|Jn) ≥
1/2 − εn for all sufficiently large n, and limn εn = 0. The rest of the proof is identical
to that of Lemma 2.3. �
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It follows from this lemma that ρ(C) ≥ 1/2 by the same argument that the corre-
sponding fact is proved in the last paragraph of the proof of Theorem 1.10.

Since every 1-random set passes every Solovay test, it remains only to show that
{Sn} is a Solovay test. Clearly each Sn is a clopen set, uniformly effectively in n. Thus
it remains only to show that

∑
n µ(Sn) is convergent. Note that µ(Sn) = 1−m(n, βn).

As in Section 3, let bn,ε denote the probability that a string σ chosen uniformly at
random from the strings of length n has fewer than n(1/2− ε) 1’s. By Equation (2) in
Section 3, for each τ ∈ 2n, bn,ε is also the probability that a string σ chosen uniformly
at random from 2n satisfies d(σ, τ) > 1/2 + ε.

If our functional Φ were the identity functional, we would have m(n, σ) = 1 − bn,εn
for every string σ of length n, since the measure given by Φ would be the uniform
measure. Hence, in this special case, we would have µ(Sn) = bn,εn . The next lemma
will imply that, for a general Φ, there is some string σ ∈ 2n with m(n, σ) ≥ 1 − bn,εn
and hence µ(Sn) ≤ bn,εn .

Lemma 4.2. Suppose we are given n ∈ ω and a positive real number ε. Further,
suppose we are given real numbers pσ for each σ ∈ 2n such that

∑
σ∈2n pσ = 1. For

each σ ∈ 2n, define:

qσ =
∑
{pτ | d(τ, σ) ≤ 1/2 + ε}

where d is normalized Hamming distance. Then there exists β ∈ 2n such that qβ ≥
1− bn,ε.

Proof. We calculate the average value v of qσ over all σ ∈ 2n. We have

v = 2−n
∑
{qσ | σ ∈ 2n}.

Note that each summand of the above sum is itself a sum of terms of the form pτ .
Further, each pτ occurs in 2n(1 − bn,ε) summands of v, where 2n(1 − bn,ε) does not
depend on τ so that

v = 2−n2n(1− bn,ε)
∑
τ∈2n

pτ = 1− bn,ε

Clearly, there must exist some β ∈ 2n such that qβ is at least the average value v =
1− bn,ε of these quantities. �

We now apply the lemma with ε = εn and pσ = µ({X | αXn = σ}) for each σ ∈ 2n.
Let β be the resulting string with qβ ≥ 1 − bn,εn . For every string σ ∈ 2n, we have
m(n, σ) = qσ, so m(n, βn) ≥ m(n, β) = qβ ≥ 1 − bn,εn . It follows that µ(Sn) =
1−m(n, βn) ≤ bn,εn .

We have, by Equation (2) in Section 3 that

bn,εn < e−nε
2
n = e

− n
(log n)2 .

Since
∑

n e
− n

(log n)2 converges, it follows that
∑

n bn,εn converges. Hence, by comparison,∑
n µ(Sn) converges, and {Sn} is a Solovay test, which completes the proof.

Remark. After the proof of Theorem 1.10 we remarked that we could have used Cheby-
shev’s Inequality in place of Chernoff’s Inequality by making a small adjustment. How-
ever, it does not seem possible to do this in the current result. The natural change
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to make would be to make {εn} approach 0 more slowly. However, the natural upper
bound on µ(Sn) we get from Chebyshev’s inequality is 1/(4nε2n), and it is impossible
to choose {εn} so that it tends to 0 and

∑
n(1/4nε2n) converges, by the divergence of

the harmonic series.

5. Open Questions

Let C1 be the set of degrees a such that either a is computably traceable or a is
both 1-random and hyperimmune-free. Let C2 be the set of degrees which are neither
hyperimmune nor PA. By the results of this paper

C1 ⊆ {a | Γ(a) ≥ 1/2} ⊆ C2.

Question 5.1. Can either of the two inclusions above be replaced by equality?

Note that {a | Γ(a) ≥ 1/2)} is closed downward, so that for this class to equal Ci,
where i ∈ {1, 2}, it is necessary that Ci be closed downward. It is clear that C2 is
closed downward. Demuth proved (see [2, Theorem 8.6.1]) that every noncomputable
set truth-table reducible to a 1-random set has 1-random Turing degree. From this, it
easily follows that C1 is also closed downward.

Question 5.2. What is the range R of Γ?

We know only that {0, 1/2, 1} ⊆ R ⊆ [0, 1/2] ∪ {1}.

Question 5.3. If Γ(a) = 1/2, must every a-computable set be coarsely computable at
density 1/2?

Theorems 1.10 and 1.12 show that if a is computably traceable or 1-random and
hyperimmune-free, then every a-computable set is coarsely computable at density 1/2,
so these results do not suffice to answer this question.
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